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Abstract

The proposed research is essentially concerning on the development of powerful
numerical methods to deal with practical engineering problems. The direct methods
requiring the use of a strong mathematical tool and a proper numerical discretiza-
tion are considered.

The current work primarily focuses on the study of limit and shakedown analysis
allowing the rapid access to the requested information of structural design with-
out the knowledge of whole loading history. For the mathematical treatment, the
problems are formulated in form of minimizing a sum of Euclidean norms which
are then cast as suitable conic programming depending on the yield criterion, e.g.
second order cone programming (SOCP).

In addition, a robust numerical tool also requires an excellent discretization strat-
egy which is capable of providing stable and accurate solutions. In this study, the
so-called integrated radial basis functions-based mesh-free method (iRBF) is em-
ployed to approximate the computational fields. To eliminate numerical instability
problems, the stabilized conforming nodal integration (SCNI) scheme is also intro-
duced. Consequently, all constrains in resulting problems are directly enforced at
scattered nodes using collocation method. That not only keeps size of the optimiza-
tion problem small but also ensures the numerical procedure truly mesh-free. One
more advantage of iRBF method, which is absent in almost meshless ones, is that
the shape function satisfies Kronecker delta property leading the essential boundary
conditions to be imposed easily.

In summary, the iRBF-based mesh-free method is developed in combination with
second order cone programming to provide solutions for direct analysis of structures
and materials. The most advantage of proposed approach is that the highly accu-
rate solutions can be obtained with low computational efforts. The performance of
proposed method is justified via the comparison of obtained results and available
ones in the literature.
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Tóm tắt

Luận án này hướng đến việc phát triển một phương pháp số mạnh để giải quyết
các bài toán kỹ thuật, và phương pháp phân tích trực tiếp được sử dụng. Phương
pháp này yêu cầu một thuật toán tối ưu hiệu quả và một công cụ rời rạc thích hợp.

Trước tiên, nghiên cứu này tập trung vào lý thuyết phân tích giới hạn và thích
nghi, phương pháp được biết đến như một công cụ hữu hiệu để xác định trực tiếp
những thông tin cần thiết cho việc thiết kế kết cấu mà không cần phải thông qua
toàn bộ quá trình gia tải. Về mặt toán học, các bài toán được phát biểu dưới dạng
cực tiểu một chuẩn của tổng bình phương các biến trong không gian Euclide, sau đó
được đưa về dạng chương trình hình nón phù hợp với tiêu chuẩn dẻo, ví dụ chương
trình hình hón bậc hai (SOCP).

Hơn nữa, một công cụ số mạnh còn đòi hỏi phải có kỹ thuật rời rạc tốt để đạt
được kết quả tính toán chính xác với tính ổn định cao. Nghiên cứu này sử dụng
phương pháp không lưới dựa trên phép tích phân hàm cơ sở hướng tâm (iRBF)
để xấp xỉ các trường biến. Kỹ thuật tích phân nút ổn định (SCNI) được đề xuất
nhằm loại bỏ sự thiếu ổn định của kết quả số. Nhờ đó, tất cả các ràng buộc trong
bài toán được áp đặt trực tiếp tại các nút bằng phương pháp tụ điểm. Điều này
không những giúp kích thước bài toán được giữ ở mức tối thiểu mà còn đảm bảo
phương pháp là không lưới thực sự. Một ưu điểm nữa mà hầu hết các phương pháp
không lưới khác không đáp ứng được, đó là hàm dạng iRBF thỏa mãn đặc trưng
Kronecker delta. Nhờ vậy, các điều kiện biên chính có thể được áp đặt dễ dàng mà
không cần đến các kỹ thuật đặc biệt.

Tóm lại, nghiên cứu này phát triển phương pháp không lưới iRBF kết hợp với
thuật toán tối ưu hình nón bậc hai cho bài toán phân tích trực tiếp kết cấu và vật
liệu. Thế mạnh lớn nhất của phương pháp đề xuất là kết quả số với độ chính xác
cao có thể thu được với chi phí tính toán thấp. Hiệu quả của phương pháp được
đánh giá thông qua việc so sánh kết quả số với những phương pháp khác.
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Chapter 1

Introduction

1.1 General

Limit and shakedown analysis or so-called direct analysis are well-known as the
efficient approaches for safety assessment as well as structural design. The objective
of both analysis models is to determine the maximum load that structures can be
supported under the effect of different loading conditions. While limit analysis is
usually used for the structures subjected to instantaneous loads increasing gradually
until the collapse appears, shakedown analysis is appropriate for the structures
under repeat or cyclic loads. The best advantage of direct analysis is the ability to
estimate the ultimate load without obtaining the exact knowledge of loading path.

Based on the bounding theorems, direct analysis results in an optimization prob-
lem, in which the unknowns to be found are the velocity vector of kinematic form
or the stress vector of static form, or both velocity and stress vectors of mixed
formulation. Owing to the complexity of engineering problems, the numerical ap-
proaches are required to discretize the computational domain and approximate the
unknown fields. Various numerical schemes have been proposed in framework of
direct analysis, e.g. mesh-based or mesh-free methods. Besides that, one of major
challenges in the field of limit and shakedown analysis is dealing with the nonlinear
convex optimization problems. From the mathematical point of views, the result-
ing problems can be solved using different optimization techniques using linear or
nonlinear algorithms.

In addition, owing to the increasing use of composite and heterogeneous ma-
terials in engineering, the computation of micro-structures at limit state becomes
attracted in recent years. Known as the innovative micro-mechanics technique, ho-
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mogenization theory is such an efficient tool for the prediction of physical behavior
of materials. The macroscopic properties of heterogeneous materials can be deter-
mined by the analysis at the microscopic scale defined by the representative volume
element (RVE). The implementation of limit analysis for this problem is similar to
one formulated for macroscopic structures. A number of numerical approaches for
direct analysis of isotropic, orthotropic, or anisotropic micro-structures have been
developed and achieved lots of great accomplishments.

Figure 1.1 illustrates the whole numerical implementation for limit and shake-
down analysis of structures and materials.

Structure
(geometry, dimension, material,
boundary condition, loading)

Direct analysis
(limit, shakedown)

Numerical
discretization

Mathematical
algorithms
(linear, non-
linear, SOCP)

Actual load
multiplier

Lower bound
theorem

Upper bound
theorem

Stress/moment
field

Displacement
field

Equilibrium
formulation

Kinematic
formulation

Lower bound
load multiplier

Upper bound
load multiplier

solve solve

converge converge

Figure 1.1: Direct analysis: numerical procedures.
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1.2 Literature review

1.2.1 Limit and shakedown analysis

Theory of limit analysis was developed in early 20th century based on the elastic-
or rigid-perfectly plastic material model to support the engineers evaluate the col-
lapse load of structures. The early theories of limit analysis was given by Kazincky
in 1914 and Kist in 1917, then the complete formulation of both upper-bound and
lower-bound theorems was firstly introduced by Drucker et al. [1]. Latterly, Hill
[2] proposed an alternative formulation using the rigid-plastic material model. The
landmark contributions to the development of limit analysis belong to Prager [3];
Martin [4]. The significantly contributions to the application of limit analysis in
engineering problems can be founded in works of Hodge [5–7], Massonnet and Save
[8], Save and Massonnet [9], Massonnet [10], Chakrabarty and Drugan [11], Chen
and Han [12], Lubliner [13]. Since then, the researchers concern not only theory
aspect but also the application of limit analysis in practical engineering problems.

In reality, structures are usually subjected repeat, cycle or even time-dependent
loading. As a result, the structures may collapse when the loads are lower than
those determined using limit analysis formulation. That means limit analysis may
fail to provide a proper measure of structural safety. In this case, shakedown analy-
sis can be used. The first formulation of shakedown analysis theorem was expressed
by Bliech in 1932, then the static and kinematic principles were generally proved
by Melan [14] and Koiter [15], respectively, which are well-known as lower bound
and upper bound approaches. Next, the first separate criterion of shakedown (the
incremental collapse criterion) was formulated by Sawczuk [16] and Gokhfeld [17].
Konig [18] completed the theory with his work on the alternative criterion. The
separated shakedown theory is based on the fact that two different types of failure
modes cause the in-adaptation of structures. It suggests the use of different for-
mulations in dealing with two corresponding load factors, see e.g. Koenig [18]. The
extensions of classical theorems to more realistic structures have attracted in re-
cent years such as: geometrically linear structures, elastic perfectly-plastic material
models, quasi-static mechanical and thermal loading, temperature-independent me-
chanical properties, negligible time-dependent effects. Among them, hardening and
non-associative flow rules have been studied by Maier [19], Pycko and Maier [20],
Heitzer et al. [21]. Studies on shakedown problem under geometric non-linearity
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can be found in works of Weichert [22], Weichert and Hachemi [23], Polizzotto and
Borino [24]. Shakedown has been extended to composites in study of Weichert et
al. [25], damaged and cracked structures in studies of Feng and Gross [26], Hachemi
and Weichert [27], Belouchrani and Weichert [28]. Another important area concern-
ing the effects of temperature on yield surface was carried-out by Kleiber and Konig
[29], Borino [30]. Recently, Pham [31] pointed out that real engineering materials
may not yield but may fail under high hydrostatic stresses. In that work, the author
has proposed a modified shakedown kinematic theorem using a fictitious material
that can yield in bulk tension and compression. Le et al. [32] demonstrated that
under repeat or cyclic load, structures can be collapse by the rotating plasticity,
a general form of alternating plasticity, incremental plasticity and instantaneous
plasticity.

The only difference between limit analysis and shakedown analysis is the load-
ing conditions applying to structures. Limit analysis considers structures under one
vertices loading, whereas shakedown model takes into account structures under a
loading domain formed by various vertices. Consequently, the size of shakedown
problem is lager than limit ones. It is important to note that limit analysis is the
special case of shakedown analysis when number of loading vertices reduces to one.
Therefore, in general, two models are very similar. There are two issues when han-
dling that problems: first, it is in need of a robust tool for solving the nonlinear yield
functions; and second, it is necessary to develop an appropriate numerical method
for the approximation of problems. The brief overview of historical development of
related matters will be expressed in the following.

1.2.2 Mathematical algorithms

One of challenges in solving limit and shakedown problem is finding out an ap-
propriate optimization programming. In whole history of direct analysis, a number
of optimization tools have been developed. Linear programming (LP) is simplest
and widely used owing to the allowance of solutions for large scale problems. The
contribution to this field can be found in works of Anderheggen and Knopfel [33],
Cohn et al. [34], Nguyen [35], Sloan [36]. LP is simple for the implementation, but
the expected solutions may not be obtained due to the yield functions can not
be exactly described. Overcoming this drawback, the non-linear yield surface is
treated by the approximation of itself piecewise linear, see e.g. Maier [37], Tin-Loi
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[38], Christiansen [39]. Then, existing optimization algorithms, such as the Simplex
method or Interior-point methods can be applied. The disadvantage of this scheme
is the highly computational cost caused by linearizing the yield functions.

The nonlinear yield functions can be directly used in nonlinear programming
formulations by means of Newton-type algorithm, for which eliminating the linear
or nonlinear constrains using Lagrange multipliers is an important step in solving
the problems. Then, an unconstrained functional formulation can be dealt with
using several iterative methods. Devoting to the development of such algorithms, it
should refer to works of Gaudrat [40], Zouain et al. [41], Liu et al. [42], Andersen and
Christiansen [43], Andersen et al [44]. By other procedure, Mackenzie and Boyle [45],
Ponter and Carter [46], Maier et al. [47], Boulbibane and Ponter [48] used the elastic
compensation method considered as a direct method for nonlinear programming
technique. In those studies, Young’s modulus of each element is modified during
the iterative linear-elastic finite element, then the optimized statically admissible
stress field is obtained after each iteration leading to an upper bound and a pseudo-
lower bound solution. Similarly to the linearizing technique, the high expense of
computation is the major obstacle of this procedure.

Recently, a state of art primal-dual interior point algorithm has been introduced,
the nonlinear conditions of the yield functions can be transformed into the form
of the second order cone programming (SOCP) problem with a large number of
variables and nonlinear constraints. Then the solution of a minimization problem
with linear objective function and feasible region defined by some cones. The ad-
vantage of this method is the ability to solve large problems with thousands of
variables in tens of seconds only. The important contributions to this method can
bee seen in studies of Nesterov et al. [49], Andersen et al. [50], Ben-Tal and Ne-
mirovski [51], Renegar [52], Makrodimopoulos and Bisbos [53], Bisbos et al. [54],
Makrodimopoulos [55].

1.2.3 Discretization techniques

Theorems of limit and shakedown analysis lead to two classic problems includ-
ing static and kinematic formulations corresponding to the lower-bound and upper-
bound problems, respectively. The lower-bound solution will be obtained using equi-
librium formulation, and the stress or moment fields associated with the nodal val-
ues are dicretized. The approximated fields must satisfy the boundary conditions,
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the equilibrium conditions and the fulfill of yield criterion. In order to satisfy this
statically admissible conditions, a set of linear constrains on the stress or moment
parameters needs to be introduced. Therefore, approximating the stress field is more
difficult than those of displacement or velocity fields. The displacement or velocity
formulation requires an approximation of a kinematically admissible displacement
velocity field, and the upper-bound solution will be obtained. The internal com-
patibility condition can be straightforwardly satisfied in the assembly scheme, and
the boundary conditions can be enforced directly. A number of studies based on
numerical method, such as finite element method (FEM), smoothed finite element
method (SFEM), or mesh-free methods were carried out for limit and shakedown
problems.

Nowadays, finite element method has become the most popular tool in academic
as well as industrial applications. In the literature, there are three basic types of
finite element models, i.e., displacement, equilibrium and mixed formulations. In
case of limit analysis, equilibrium model has been investigated in studies of Hodge
and Belytschko [56], Nguyen [57], Krabbenhoft and Damkilde [58], Lyamin and
Sloan [59], Le et al. [60]. Displacement finite element models can be found in works
of Hodge and Belytschko [56], Le et al. [60], Anderheggen [61], Krabbenhoft et al.
[62], Capsoni and Corradi [63], Bleyer and Buhan [64]. The mixed formulation allows
both stresses and displacements to be determined directly, and volumetric locking
can be avoided, but there is one drawback exiting, that is the solution obtained is
lack of information on the status, it is unclear whether the solution is upper bound
or lower bound. Mixed approach for limit analysis was developed by Christiansen
[39], Capsoni [65], Yu and Tin-Loi [66]. Finite shakedown formulation combined
with different optimization algorithms, e.g., piecewise-linear yield criteria, Newton-
type scheme or interior-point method were developed. The contribution of this field
can be seen in works of Belytschko [67], Tin-Loi [38], Carvelli et al. [68], Heitzer et
al. [21], Yan and Nguyen [69], Vu et al. [70, 71], Simon [72], Simon and Weichert
[73–76]. Recently, FEM in combination with second-order cone programming was
also applied to solve limit and shakedown analysis in works of Tran et al. [77], Le
et al. [32]. An improved form of standard FEM so-called SFEM has been extended
to direct analysis in studies of Le et al. [78, 79], Tran et al. [80], Nguyen-Xuan et
al. [81], Ho et al. [82]. Besides FEM and SFEM, an other mesh-based procedure
named Boundary Element method (BEM) has been successfully applied for limit
and shakedown analysis, the contribution can be found in works of Maier and
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Polizzotto [83], Panzeca [84], Zhang et al. [85], Liu et al. [86, 87].

In recent years, taking advantage of computational efficiency, mesh-free meth-
ods have been continuously developed and significantly devoted to the development
of limit and shakedown analysis. Natural Element method was employed to han-
dle limit and shakedown problems, see e.g. Zhou et al. [88, 89]. Application of
Element-free Galerkin method combined with the non-linear programming for solv-
ing optimization problems can be found in works of Chen et al. [90, 91]. Le et al.
[92–95] also adopted EFG method by combining with stabilized conforming nodal
integration (SCNI) and SOCP, then employed to solve upper bound as well as lower
bound limit analysis. Similarly, the meshless based radial basis function so-called
Radial Point Interpolation method was also using to deal with the upper-bound
limit analysis problems, see e.g. Liu and Zhao [96].

1.2.4 The direct analysis for microstructures

The computation of heterogeneous microstructure were early carried out from
19th century by Voigt (1887) with the rule of mixtures. Then, several homogeniza-
tion techniques, such as self-consistent [97], variational bounding methods [98, 99]
and asymptotic homogenization [100, 101] have been proposed to handle the mi-
crostructures with assumptions of linear elastic behavior, simple geometries and
small strains. Since the increasing use of composite materials and the requirement
of dealing with the complex behavior of microstructures, a new class of so-called
unit cell methods was early proposed by Eshelby [97] and widely applied in this field
[102, 103]. This approach can provide the effective properties of the material as well
as the valuable information on the local micro-structural fields. However, the unit
cell methods are based on a priori assumed macroscopic constitutive relations, which
is usually infeasible when the constitutive behaviour becomes non-linear. There-
fore, most of above techniques are unable in large deformations, complex loading
paths or the change of geometries. In recent years, the multi-scale homogenization
technique or also called global-local analysis firstly proposed by Suquest [104] has
been widely exploited. The computational homogenization methodology have been
mostly applied to the periodic composite and heterogeneous materials. Techniques
of computational homogenization can overcome the major drawbacks of unit cell
methods, provide transition between micro-scale features and macro-response, and
allow the use of modelling technique on microscopic structures as finite element
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method [105–107], the Voronoi cell method [108, 109], a crystal plasticity frame-
work [110], boundary element method [111], mesh-free methods [112, 113].

Extending to predict the macroscopic behavior of composite materials, Suquet
[114] introduced the homogenization theory to plastic mechanics. Based on the
concept of RVE and homogenization technique of Suquet, Buhan and Taliercio [115]
proposed the first formulation of limit analysis in terms of solving the composite
structure at micro-scale. The theoretical formulation then developed in the studies
of Taliercio [116], Taliercio and Sagramoso [117] for fiber-reinforced composite using
Drucker-Prager, Mohr-Coulomb or von Mises yield criterion. The first numerical
implementation for this field belongs to Francescato and Pastor [118] with the use
of finite element method and linear mathematical programming. By means of static
direct methods, Weichert et al. [25, 119] developed a 3-dimensions finite element
procedure for analysis of isotropic microstructures. Using a similar approach, Zhang
et al. [120] presented the quasi-lower bound formulation for periodic composite
and heterogeneous materials using the nonlinear programming. Besides that, the
kinematic formulations in combination with nonlinear algorithms can be found in
studies of Li et al. [121–125]. In these works, both isotropic and anisotropic materials
obeying the von Mises or elliptic yield criterion were considered. For the purpose of
improving the computational aspect, Le et al. [126] proposed a numerical method
based on the finite element method and the combination of kinematic theorem and
homogenization theory for limit analysis of periodic composite. The study proved
that the accurate solutions can be obtained rapidly using SOCP.

1.2.5 Mesh-free methods - state of the art

The necessary of mesh-free methods

Parallel with the development of information technology and computer, the nu-
merical methods become indispensable tools for simulation and design of practical
structures. The engineering problems are usually formulated in form of Partial
differential equations (PDEs) relating to the boundary conditions, and solved us-
ing analytical method. The complex problems need to be approximated using the
numerical methods, for which the PDEs are transferred to an equilibrium form so-
called variational form or weak form, then a set of simultaneous algebraic equations
is established for overall computational domain via the approximate functions. The
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boundary conditions are required to applied before solving problem to determine
the approximate solutions.

As mentioned, among numerical schemes, FEM have been rapidly developed
and became the most popular tools in simulation as well as analysis of engineering
problems. Various codes or commercial software packages based on FEs background
are developed and widely used in almost areas, for example structural mechanics,
thermal analysis, fluid dynamics, and even multi-physics simulation. In FEM, the
computational domain is sub-divided to various finite elements connected together
at nodes. This work is called discretization; and the nodal connectivity well-known
as the mesh is the fundamental feature of mesh-based method. The creation of
the mesh plays an important role in FEM implementation and takes most of total
computational cost. There are several issues generated by the mesh, for example in
large deformation problems, the continuous remeshing of domain may be required to
avoid the breakdown of the computation caused by the excessive mesh distortion.
The very fine mesh may be required for the accurate solutions, that makes the
computational cost increase. In one other case, fracture problems, FEM may fail in
dealing with the discontinuities at crack paths and crack tips where the refinement
is required after every computational step. Therefore, no-mesh is necessary in whole
process of solving problems, and that is the ideal for a novel scheme named mesh-
free or meshless method.

Generally, dealing with engineering problems, the numerical implementation of
mesh-free (MF) methods is similar to mesh-based ones, see Figure 1.4. The major
difference between MF scheme and FEM is the strategy to discretize the compu-
tational domain and construct the shape function. The nodal connectivity is not
required in mesh-free methods (Figure 1.2). The absence of mesh is the most at-
tractive characteristic of MF methods leading to the reduction of computational
cost [127] and the flexibility in operation of nodes (adding, eliminating or moving
nodes) within the computational domain. Owing to that advantage, the adaptive
technique as p−adaptive or h−adaptive can be conveniently applied in MF method
[127]. The computation is also flexibly implemented using several procedures. Some
mesh-free models use Gauss points relating to background cells as Figure 1.3(a),
that is similar to FEM and does not ensure the truly meshless feature. In other
methods, the Gauss points are replaced by the scattered nodes within the problem
domain. Then, the nodal computational domain (or representative domain) can be
determined using various different means, for example Voronoi diagram known as
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the duality of Delaunay triangles as Figure 1.3(a). For convenience, the available
Vononoi function in programming language software, e.g. Matlab, C++ or Python,
can be utilized.

(a) FEM discretization (b) MF discretization

Figure 1.2: The discretization of FEM and MF method

(a) Based on Gauss points (b) Based on scattred nodes

Figure 1.3: The computational domain in mesh-free method

An other difference of mesh-free methods compared with mesh-based procedures
is the influent domain (or support domain). The concept influent domain is used in
case of the computation is the carried out on scattered nodes, whereas the concept
support domain is used when the implementation bases on arbitrary point within
the computational domain, e.g. Gauss point. For convenience, the concept influent
domain used in the thesis. While the nodal influent domains in mesh-based methods
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are limited by all elements attached to nodes, in meshless method, the influent do-
mains of nodes can be flexibly chosen (rectangle domain, square domain or circular
domain). That domains can overlap as seen in Figure 1.2(b), and can be resized
easily. That ensures the good continuity for MF approximation in comparison with
the traditional approaches. Figure 1.2(b) illustrates the strategy to determined the
influent domain using the circle where the influent radius RI can be modified via a
dimensionless parameter βs as

RI = βsdI , βs ≥ 1 (1.1)

where dI denotes the minimal distance from considered node to its neighbours in
the computational domain. The accuracy and computational expensive depend on
the choice of influent radius. Therefore, parameter RI needs to be investigated in
the numerical implementation.

The most important advantages of mesh-free methods in comparison with FEM
is the high-order continuous shape function. As a consequence, the MF methods can
provide highly accurate solutions with the good convergence rate [128]. Moreover,
the accuracy of solutions in MF method can be easily improved via the modification
of influent domain. The most common drawbacks of MF methods are probably the
computational cost when constructing the shape function, the density of matrices
and the lack of Kronecker-delta property in several approximation techniques.

Recently, various modes of meshless method have been developed, improved and
widely applied in different areas, such as solid mechanics, fluid mechanics, molecular
dynamics or even molecular biology. Each method bases on an individual basis
function and uses an individual approximation or interpolation technique, more
details will be presented in the following sections.

Overview of popular mesh-free methods

The original mesh-free method is Smooth Particle Hydrodynamics (SPH) intro-
duced by Gingold and Monaghan [129] and Lucy [130]. SPH method firstly applied
to simulate the phenomena such as supernova, and then was employed in fluid
dynamics. Libersky and Petschek [131] extended this method to solid mechanics
analysis. The main advantage of the SPH method is its ability to treat local de-
formations, which is considered to be better than mesh-based methods. Then, this
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Figure 1.4: Numerical procedures: Mesh-free method vesus FEM
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feature was utilized to handle a number of problems as metal form or crack prop-
agation analysis, etc. However, the classical formulations of SPH lack of stability
and consistency, thus various modifications have been carried out to improve the
accuracy in recent years.

Based on the ideal of SPH method, Belytschko et al. [132] developed the Element-
free Galerkin (EFG) method using Moving Least Square (MLS) approximation pri-
orly proposed by Lancaster and Salkauskas (1981) [133]. EFG method avoids the
discontinuous feature of previous SPH versions and becomes the most widely used
meshless method. Liu et al. [134] proposed the meshless method named Repro-
ducing Kernel Particle Method (RKPM). Although the method is similar to EFG
procedure, RKMP originally bases on the wavelets rather than on curve-fitting.
Surprisingly, the polynomial reproduction leads to the shape function of RKPM
almost identical to one of EFG scheme. At the same time, Duarte and Oden [135]
introduced hp-cloud method. That is the first mesh-free method developed without
relying on the idea of SPH. In contrast to the EFG and RKPM method, hp-cloud
method uses an extrinsic basis to increase the consistency (or completeness) of
expression. Based on the similarities between meshless method and finite element
those, Melenk et al. [136] formulated a consolidated form of them so-called Partition
of Unity Finite Element Method (PUFEM). One of popular mesh-free procedures
named Meshless Local Petrov-Galerkin (MLPG) was developed by Atluri et al.
[137]. The difference of MLPG compared to above mentioned methods is the lo-
cal weak form constructed on overlap sub-domains alternating to the global weak
form, and then the integrals are calculated in that local domains. Using MLPG
approach, the integration can be implemented without the background cells, en-
suring that MLPG is a truly meshless method. Arroyo and Ortiz [138] proposed a
mesh-free method based on the Local maximum-entropy approximation (LMEA).
The basis function used in this method is similar to one in MLS, but its advantage
is that the local approximation function produces a shape function nearly satisfy-
ing Kronecker-delta property at the boundaries of problem domain. Using Natu-
ral Neighbour Interpolation (NNI) technique introduced by Sibson [139], Brauand
Sambridge [140] developed the Natural Element method (NEM) for the purpose of
solving PDEs. NEM was then extended to solid mechanics analysis by Sukumar et
al. [141].

Besides, several meshless methods were developed based on the interpolation
technique, and the radial basis functions (RBFs) are commonly utilized. The fun-
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damentals of RBF method were firstly introduced by Hardy [142] for cartography
problem. In this study, the multiquadric (MQ) radial function was presented. Lately,
Franke [143] investigated 32 most commonly used interpolation methods and proved
that MQ is the best one. The main feature of MQ method is the basis function only
depends on the Euclidean distance which is radially symmetric to its center. From
MQ method, different radial functions was generalized as the thin plate spline, the
Gaussian, the cubic, etc, constituting the so-called Radial basis function method, see
e.g. Duchon [144]. Recently, Kansa [145, 146] introduced RBF collocation method
considered as a way to solve the partial differential equations (PDEs) for parabolic
elliptic and hyperbolic. Kansa’s method bases on the collocation method and the
MQ-RBF, yielding to the global approximation. In this scheme, the dense stiffness
matrix is obtained. As a result, it takes a very expensive cost to solve the prob-
lems with a large number of collocation points. Avoiding that drawback, the RBF
Hermite-Collocation was proposed, both globally and locally supported RBF was
used. The results proved that globally supported RBF gives the more accurate solu-
tion than locally supported case, but its computational expense is higher. Recently,
the RBF method named Local Multiquadric was proposed by Lee et al. [147], for
which the approximate function is constructed using sub-domains, then the local
approximation and a sparse stiffness matrix are obtained. Applying weak form,
Wendland [148] developed a Galerkin mesh-free method using radial basis func-
tions. RBFs have also been used in Boundary element method (BEM) or Meshless
local Petrov-Galerkin (MLPG) and successfully applied to solve various nonlinear
problems in computational mechanics.

With the purpose of handling the matters generated by the lack of Kronecker-
delta property in mesh-free approximations, Liu and Gu developed the Point In-
terpolation Method (PIM) using the polynomial basis function. PIM encounters
drawback in inverting matrices vanished in some situations, thus an alternative one
so-called Radial Point Interpolation Method (RPIM) was introduced [149]. The ma-
jor advantage of using radial basis function in PIM is the invertibility of moment
matrix. Unfortunately, the accuracy of results may not be given as expected. As a
result, a polynomial term is added into the basis function to improve the accuracy as
well as the stability of solutions. Using the radial basis functions but approaching in
the opposite direction compared with RPIM, Tran-Cong et al. [150–153] developed
the Integrated radial basis function (iRBF) method. Generally, iRBF method pos-
sesses all the good features of RPIM, but its approximation is better than RPIM
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one owing to the use of multiple integration, yielding to the higher-order shape
function.

Approximation technique based on RBFs

The key ideal of mesh-free methods is that the approximation or interpolation
bases on a set of arbitrary scattered nodes. To ensure the convergence and stability,
the approximate functions must satisfy following requirements.

• Consistency: If s is the order of the highest derivative occurring in the weak
form, the approximate function should be differentiable at least up to the order
sth inside influent domain.

• Completeness: The shape function must have ability to reproduce polynomials
up to order sth to ensure the stability and convergence of numerical method. If
the shape function ΦI(x) is complete up to order sth, any degree sth polynomial
can be reproduced as

∑
I

xpΦI(x) = xp, 0 ≤ p ≤ s (1.2)

or ∑
I

p(x)ΦI(x) = p(x), ∀x ∈ Ω (1.3)

where p(x) denotes the basis function.

• Partitions of unity: The sum of all nodal shape function values at any point in
the computational domain must be unit, ensuring the proper representation of
a constant field of the solid

∑
I

ΦI(x) = 1, in ΩI (1.4)

As mentioned, up to now, mesh-free method have been considerably devel-
oped with a number of schemes based on different approximation or interpola-
tion techniques such as SPH method [129, 130], RKPM method [134], PU method
[136, 154, 155], RBFs method [145–153], MLS approximation [132], LMEA approx-
imation [138], NNI approximation [139–141], and various other approaches, more
details can be found in [156–158]. Owing to its high-order shape function and the
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advantage in enforcing essential boundary conditions, this thesis only focuses on
the iRBF method proposed by Tran-Cong et al. [150–152], where the radial basis
functions are used.

Several popular radial basis functions in the literate can be listed as follows

gI(x) =



(r2 + a2
I)q for general multiquadrics√

r2 + a2
I for multiquadrics (MQ)

1√
r2 + a2

I

for inverse multiquadrics

1
r2 + a2

I

for inverse quadrics

e
−
(

r
aI

)2

for Gaussian

r2log(r) for thin plate spline

(1.5)

where r = ‖x− xI‖ is the radius from node I th and others in the influent domain;
the shape parameter aI = αsdI , with αs > 0 is the dimensionless factor; and dI

denotes the minimum distance from node I th to its neighbours.

Direct (dRBF) and indirect/integrated (iRBF) formulations

A smooth function u(x) can be directly approximated based on a set of N scat-
tered nodes and a radial basis function as

uh(x) =
N∑
I=1

gI(x)aI (1.6)

where uh(x) is the approximate function of u(x); {aI}NI=1 is a set of expanded (or
unknown) parameter; {gI(x)}NI=1 is the radial basis function.

From (1.6), the derivatives of u(x) can be calculated as

uhj...l(x) = ∂kuh

∂xj . . . ∂xl
=

N∑
i=1

∂kgI(x)
∂xj . . . ∂xl

uI (1.7)

It is worth mentioning that errors in the approximate function computed by
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Equation (1.6) is low, but errors in its derivatives are still high [152]. Moreover,
the derivative functions, especially higher order ones, are strongly influenced by
the local behavior of the approximation. Consequently, the so-called indirect RBF
method was also developed in [150–153] and will be recalled the following.

In iRBF approach, the highest derivative (order sth) of approximate function is
firstly constructed using RBF as

uh,jk...rs(x) =
N∑
I=1

gI(x)aI (1.8)

Next, the lower-order derivatives and the original function will be calculated using
the multiple integration as follows

uh,jk...r(x) =
∫ N∑

I=1
gI(x)aIdxs + Cs(x) (1.9a)

· · ·

uh,j(x) =
∫
· · ·

∫ N∑
I=1

gI(x)aIdxs . . . dxk + Cs...k(x) (1.9b)

uh(x) =
∫
· · ·

∫ N∑
I=1

gI(x)aIdxs . . . dxj + Cs...j(x) (1.9c)

where Cs(x), . . . , Cs...j(x) is the function order 0 up to order (s − 1)th with the
parameters are integral constant.

Playing the prior inversion of matrix in (1.9c) and substituting to Equations
(1.8) and (1.9a - 1.9c), the reflection of the approximate function and its derivatives
pass through the nodal values can be obtained. It should be noted that the iRBF
shape function satisfies Kronecker-delta property leading to the essential boundary
conditions can be applied similarly to the finite element method.

Numerical implementation in mesh-free method

The engineering problems are firstly formulated in form of PDEs with the bound-
ary conditions, and then solved to obtain solutions. Consider a PDEs in domain
Ω with kinematic boundary Γu and static boundary Γt such that Γu ∪ Γt = Γ and
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Γu ∩ Γt = ∅ as follows

∇Ts σ + b = 0, in Ω (1.10a)
σ = D∇su (1.10b)

where σ is the Cauchy stress tensor; b is the body force per a volume unit; ∇ is
the differential operation; D is the matrix consisting material constants; u is the
vector including displacement components. The PDEs (1.10a) can be rewritten as

∇Ts D∇su + b = 0 (1.11)

The boundary conditions are defined by

n.σ = t, on Γt (1.12a)
u = u, on Γu (1.12b)

with n is the outward normal vector of static boundary.

The equation system (1.11) is the strong form describing the mechanical behav-
iors where displacements is the main variables. Almost engineering problems will
be solved using numerical procedures after transforming to PDEs form. There are
two main strategies for solving problems, which are known as strong form and weak
form, respectivelly, and will be clarified in the following.

Strong form - Collocation method

Consider an approximation for set of N discretized nodes as

uh(x) =
N∑
I=1

ΦI(x)uI (1.13)

with ΦI(x) is the shape function obtained using the approximate/interpolated tech-
niques previous presented; uI denotes the unknown values at nodes. For the strong
form methods, the order of approximate functions must be higher or equal to the
order of derivative of strong form equation system, and that requirement is called
strong.

In collocation method, the equation system (1.11) is satisfied at every points in
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the problem domain, and the conditions in (1.12) are applied

∇Ts D∇su(xJ) + bJ = 0, ∀J ∈ Ω (1.14a)
nD∇su(xK) = tK , ∀K ∈ Γt (1.14b)

u(xL) = uL, ∀L ∈ Γu, (J +K + L = N) (1.14c)

The advantage of collocation approaches is the simple implementation and com-
putational speed. There are no-need of integrals, and the shape conditions are di-
rectly enforced at nodes instead of at Gauss points. However, unexpected solutions
can be obtained due to the instability. In this thesis, the so-called Stability con-
forming nodal integration (SCNI) scheme will be employed to handle this drawback.
Using SCNI technique, problems can be implemented by the similar way of collo-
cation method, but the stability and accuracy of solutions are ensured.

Galerkin weak form

The unknown field will be approximated via a trial function u. Multiplying both
sides of strong form (1.11) with a arbitrary trial function ϕ and carrying out the
integration on overall domain Ω, the weak form will be obtained as

∫
Ω
ϕT∇Ts D∇sudΩ +

∫
Ω
ϕTbdΩ = 0 (1.15)

Using the partial integral, then applying the static boundary condition (1.12a)
and the condition ϕ = 0 on Γu, the weak form (1.15) can be rewritten as

∫
Ω

(∇sϕ)TD(∇su)dΩ =
∫

Ω
ϕTbdΩ +

∫
Γt

ϕT tdΓ (1.16)

If in the strong form, the PDEs are required to be satisfied at every points in
problem domain and the approximate function must have order at least equal to
those in the highest derivative of PDEs, in the weak form, applying the partial
integral for (1.15) leads to the reduction of the order of operator ∇. Therefore, the
requirement of continuity is weak, meaning that the order of trial function can be
smaller than the order of highest derivative in PDEs and all conditions need to be
satisfied only inside domain Ω. Noting that when transforming from strong form to
weak form, the static condition (1.12a) is used, thus there is only the displacement
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condition (1.12b) in the weak form.

Using weak form, the engineers usually prefer to directly access the Galerkin
weak form

∫
Ω

(∇sδu)TD(∇su)dΩ−
[∫

Ω
uTbdΩ +

∫
Γt

δuT tdΓ
]

= 0 (1.17)

with δ is the variational operator. Considering physical meaning, a displacement
field satisfying Equation (1.17) with the arbitrary test function ϕ will minimize the
total power in the whole system and keep the system in the stable and equilibrium
state. Equation (1.17) is completely similar to equation (1.16) constructed from the
strong form.

The mesh-free method based on Galerkin formulation can be found in the studies
of Belytschko et al. [132, 159, 160], Liu et al. [134], Duarte and Oden [135] or
Melenk and Babuska [136]. Two major aspects of this method including applying
the essential boundary condition and estimating the integrals in the weak form
equations will be discussed in following sections.

Enforcement of essential boundary conditions

Usually in mechanics problems, when considering behavior at elastic state, after
constructing the stiffness matrix, it is in need to eliminate the singularity caused
by the physical movement of the body, this work is called enforcing the essential
boundary conditions. In order to easily impose this conditions, the shape functions
are required to satisfy Kronecker-delta property, it means

ΦI(xJ) = δIJ =


1 if I = J,

0 if I 6= J.
I, J = 1, 2, . . . , N (1.18)

While Kronecker-delta property obviously exists in FEM, most of meshless ap-
proaches lack this feature. Consequently, when applying the boundary conditions,
several special techniques will be employed such as Lagrange multiplier [132, 134–
136], penalty method [161, 162], modified variational principle [159], point collo-
cation method [161], coupling to with FEM [160, 163] or specially modified shape
function [164]. For the case of RPIM and iRBF approaches, the essential boundary
conditions can be imposed similarly to the finite element method.
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Numerical integration

In the numerical methods, the use of numerical integration is the essential work
to evaluate the integrals on the computational domain. Mesh-free methods usually
employ two main schemes, there are using Gauss integral based on the background
cells and using nodal integral based on discretized nodes. Among them, Gauss in-
tegral is the most popular technique for numerical methods. The drawback of this
scheme is the requirement of background cells, making the procedure not truly
meshless. In order to obtain a good description of the high-order shape function, a
number of Gauss points are required in the domain, increasing the computational
cost. Moreover, if the background cells are used in Galerkin weak form, the numeri-
cal integration errors (with Gauss quadrature) occurs in all mesh-free approximation
owing to the support domains for the basis functions do not coincide with the back-
ground cells. Consequently, instead of using Gauss integral, Beissel and Belytschko
[165] proposed the modification of power functional by adding a square of residual
weight to the equilibrium equation in order to eliminate the singularity. In other
research, Chen et al. [166] introduced the Stability conforming nodal integration
(SCNI) technique based on the idea of smoothing strain rate at node. Then, to im-
prove this technique in terms of accuracy, stability and convergence rate, Chen et
al. [167] proposed to add a reinforced linear function into the approximation. The
scheme was used in combination with Moving Reproducing Kernel Particle Method
(MRKPM) in [167].

1.3 Research motivation

Numerical methods are the most efficient tools for current studies in the field of
limit and shakedown analysis. As mentioned above, a number of researchers have
devoted their effort to develop the robust approaches for this area. The numerical
procedures using continuous field, semi-continuous field (Krabbenhoft et al. [62]),
or truly discontinuous field (Smith and Gilbert [168]) have been executed with the
support of finite element method (FEM). However, there are several matters of
mesh-based procedures, which need to be handled, for instance, locking problems,
mesh distortion and highly sensitive to the geometry of the original mesh, partic-
ularly in the region of stress or displacement singularities. In order to improve the
computational aspect of FEM, a number of studies proposed the adaptive tech-
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nique for limit and shakedown analysis, the achievement can be found in the works
of Christiansen and Pedersen [169], Borges et al. [170], Franco et al. [171], Lyamin
and Sloan [172], Cecot [173], Ngo and Tin-Loi [174], Ciria et al. [175], Le [176].
However, the whole process is complicate and requires the fine meshing to obtain
the expected results. An improving form of FEM named SFEM (smoothed finite
element method) is also applied in works of Le et al. [78, 79], Tran et al. [80],
Nguyen-Xuan et al. [81]. Generally, SFEM is better than FEM in terms of sta-
bility and convergence, but this method does not surmount all disadvantages of
FEM caused by the mesh. Recently, mesh-free methods are also extended to direct
analysis. Among them, Element-free Galerkin (EFG) method is the most interested
choice, several typical studies can be noted here as Chen et al. [90, 91], Le et al.
[92–95]. Besides, some other meshless procedures have been also successfully ap-
plied to this area such as Natural Element method (NEM - Zhou et al. [88, 89]),
Radial Point Interpolation method (RPIM - Liu and Zhao [96]). In comparison with
the traditional approaches, mesh-free methods possess the high-order shape func-
tion, hence above disadvantages can be overcame. However, it should be noted that
several meshless methods lack Kronecker-delta property leading to the difficulty
in imposing the essential boundary conditions. Owing to the advantages of shape
function as mentioned in previous sections, iRBF method can provide an efficient
treatment for those obstacles arising in whole process of formulating and solving
optimization problems. According to the author’s knowledge, the applications of
iRBF method are focused on the fields of solving PDEs [150–153], fluid mechanics
[177], or elastic analysis of solid and fracture mechanics [178]. The development
of iRBF method for limit and shakedown analysis will be a new contribution to
this area. In addition, in previous studies using iRBF, the numerical integration
is carried out utilizing Gauss points, increasing the computational cost. Therefore,
the stabilized approximation based on the combination of iRBF approximation and
SCNI will improve the computational aspect of proposed numerical method.

Moreover, solving limit and shakedown problem requires to handle the optimiza-
tion problem involving either linear or non-linear constrains. The traditional way to
overcome this drawback is linearizing non-linear convex yield criteria. The efficient
tools, for instance, Simplex algorithm (Anderheggen and Knopfel [33], Christiansen
[179]), can be used. However, a large number of constrains and variables in the op-
timization problems are required to obtain the sufficiently accuracy results, which
increase the computational cost. On one other hand, that is the attempts to deal

22



Chapter 1. Introduction

with the convex yield criteria using non-linear packages. Although the highly ac-
curate solutions can be obtained, the expensive cost is the major trouble of this 
scheme. In framework of limit analysis, the primal-dual interior-point algorithm 
(Christiansen and Kortanek [180], Andersen and Christiansen [181]) is well-known 
as one of most robust and efficient algorithms in handling the optimization prob-
lems with large-scale nonlinear constrains. Therefore, extending of this scheme to 
the shakedown formulation will lead to more advantages for direct analysis of either 
structures or materials.

Besides, the earliest application of direct analysis for microscopic structures can 
be found in studies of Buhan and Taliercio [115], Taliercio [116], Taliercio and 
Sagramoso [117], where the limit load of typical problems were determined. The 
homogenization theory was applied to limit analysis using linear programming in 
works of Francescato and Pastor [118], Zhang et al. [120], Weichert et al. [25, 119], 
Chen et al. [182]. Besides that, the nonlinear programming were also employed for 
direct analysis of heterogeneous materials by Carvelli et al. [183], Li et al. [121–
125], Hachemi et al. [184], Le et al. [126]. Actually, almost studies dealt with the 
isotropic or anisotropic materials using linear or nonlinear programming with the 
support of finite element method, the application of mesh-free method in frame-
work of computational homogenization analysis of materials at limit state is still 
unavailable.

In conclusion, it can be observed that many challenges still remain in developing 
a robust tool to improve the computational aspect of limit and shakedown analysis 
for structures and materials. The absence of the integration of an optimization 
algorithm in structural analysis software packages, e.g. ANSYS or ABAQUS, leads 
to the fact that limit and shakedown analysis has not yet been commercialized 
and widely applied in structural design. Present study focuses on the combination 
of a discretization scheme and an optimization programming to propose an efficient 
numerical approach for direct analysis method, i.e., (i) the stabilized iRBF mesh-free 
method will be developed; (ii) the optimization problems will be formulated using 
the so-called second-order cone programming (SOCP) to deal with the convex yield 
criterion; (iii) the numerical approach will be applied to handle the direct analysis 
problems for structures and materials.
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1.4 The objectives and scope of thesis

The major objective of thesis is developing the integrated radial basis functions-
based mesh-free method (iRBF method) and the optimization algorithm based on
conic programming, then extending the numerical approach to limit and shakedown
analysis of structures and materials. In order to obtain above mentioned aims, the
following tasks will be carried out.

First, the mesh-free method based on integrated radial basis functions, for which
the stability conforming nodal integration (SCNI) is employed to obtained the
smoothed versions of shape function derivatives, is developed to discretize the com-
putational domain; then the general approximate fields for different types of prob-
lems (displacement and stress fields) are established.

Second, the kinematic and static formulations of limit and shakedown analysis
for structures and materials, governed by several well-known yield criterion, e.g.,
von Mises or Nielsen, are formulated, and then the optimization problems are cast
as second-order cone programming.

Finally, the resulting optimization problems are solved using the highly efficient
tools such as Mosek software package combined with Matlab programming. The
obtained solutions are compared with other those in available studies in order to
estimate the computational aspect of proposed approaches.

It is important to note that, within the scope of the thesis, proposed numerical
method will be employed to deal with several common engineering structures, such
as continuous beam, simple frame, plates, reinforced concrete slabs, or computa-
tional homogenization analysis of micro-structures. The material model is assumed
as rigid-perfectly plastic or elastic-perfectly plastic. The 2D and 3D structures are
considered under both constant and variable loads, corresponding to limit and
shakedown analysis, respectively. The benchmark problems will be investigated for
the comparison purpose; thereby, the computational aspect of proposed approach
is evaluated.

1.5 Original contributions of the thesis

According to the author’s knowledge, the following points have never been pub-
lished in other studies, and they can be considered as the original contributions of
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the thesis

• The development of stabilized iRBF method, which is based on the combination
of iRBF approximation and SCNI scheme, for the field of limit and shakedown
analysis.

• The development of stabilized iRBF method for computational homogenization
analysis of micro-structures at limit state. This is the first time a mesh-free
method is employed to treat that problem.

• Based on iRBF approximation and bounding theorems, the kinematic and
static limit and shakedown analysis are formulated in form of SOCP. Proposed
method is used to deal with various types of structures and materials obeying
different yield criterion.

1.6 Thesis outline

The thesis includes 7 chapters, in which chapters 3, 4, 5 and 6 present the contents
and numerical solutions collected from the manuscripts published or submitted to
publication. The outline of the thesis is the following.

Chapter 1 generally introduces the thesis; the review of contents relating to the
thesis, summarizes the historical development, applications and the contributions
of available numerical procedures for engineering problems. Besides, the research
motivations, objectives and scope of the thesis are also clarified.

Chapter 2 expresses the fundamental theories applied in the thesis involving limit
and shakedown analysis, the optimization algorithms (second-order cone program-
ming), the homogenization theory and the integrated radial basis function-based
mesh-free method.

Chapter 3 presents the application of iRBF method for limit analysis of plane
problem where both kinematic and static field corresponding to the upper and lower
bound formulations are investigated. The obtained limit load multipliers for various
benchmark problems are compared with those reported in previous studies.

Chapter 4 expresses the other application of iRBF method for limit analysis of
reinforced concrete slabs under bending loads. The kinematic formulation of prob-
lems are considered, then the limit load and the collapse mechanism of slabs with
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various different shapes are determined. The computational efficiency of proposed
method is evaluated via the comparison with other studies.

Chapter 5 presents the stabilized iRBF method in the application for limit and
shakedown analysis of plane problems using either two dimensional or three di-
mensional models. The equilibrium formulation is employed in this section. The
quasi-lower bound of limit and shakedown loads are obtained owing to several spe-
cial techniques. The elastic stress field, residual stress field as well as the plastic
stress field for various different problems are illustrated. As previous chapters, the
computational aspect is also analysis.

Chapter 6 investigates the computational homogenization analysis of materials
using stabilized iRBF method. The approximate results involving limit load multi-
pliers and the yield surface of materials are expressed.

Chapter 7 presents the discussions on the numerical solutions, the convergence
and reliability of results obtained using proposed method. Finally, several conclu-
sions are drawn and the recommendation for future works are also presented.
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Fundamentals

Previous chapter presents the literature review of limit and shakedown theory,
homogenization technique as well as different approximation schemes of mesh-free
methods. This chapter will clarify fundamentals applied to this thesis. The iRBF
based meshless method proposed by Tran-Cong et al. [150–153] will be used to
handle all problems in the thesis.

2.1 Plasticity relations in direct analysis

2.1.1 Material models

In plasticity theory, for convenience, the real behaviour of materials are replaced
by the idealized models for which the hardening or softening behaviour can be
ignored. Figure 2.1(a) illustrates the elastic-perfectly plastic model where material
behavior is considered in two stages including elasticity and plasticity. In this model,
materials behave elastically when stress is below the ultimate strength; otherwise,
the yield occurs. In fact, the elastic deformations are very small in comparison with
plastic ones; therefore, it can be ignored. In other words, the elastic-perfectly plastic
model can be replaced by the rigid-perfectly plastic one as seen in Figure 2.1(b).

The plastic deformations obey the flow rule as

ε̇ = µ̇
∂ψ

∂σ
(2.1)

where µ̇ > 0 is plastic parameter; ψ(σ) denotes yield function forming the space
limited by a time-independent yield surface such that

• ψ(σ) < 0: elastic behavior;
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σ

ε

σp

(a) Elastic-perfectly plastic model

σ

ε

σp

(b) Rigid-perfectly plastic model

Figure 2.1: Material models

• ψ(σ) = 0: appearance of plastic deformations;

• ψ(σ) > 0: inaccessible region.

The material models are required to obey the stability postulate proposed by
Drucker and its important consequences called the normality rule and convexity.

Drucker’s stability postulate

σ

Δσ > 0

Δε > 0

Δσ.Δε > 0

ε

(a) Stable

σ

ε

Δσ < 0

Δε > 0

Δσ.Δε < 0

(b) Unstable

σ Δσ.Δε < 0

Δσ > 0

Δε < 0

ε

(c) Unstable

Figure 2.2: Stable and unstable material models

Following Drucker, material models are stable if the work produced over the
cycle of applied and removed loads is non-negative

∮
(σ − σ0)dε ≥ 0 (2.2)

where σ is the current stress tensor on the yield surface (ψ(σ) = 0); σ0 denotes
the plastically admissible stress tensor (ψ(σ0) < 0).

Above formulae is also simply known as Drucker’s inequality and it is appropriate
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for perfectly plastic and hardening materials

(σ − σ0)ε ≥ 0 (2.3)

Figure 2.2 describes the stable behavior (producing positive work) and unstable
behavior (producing negative work). Following that, materials satisfy the behavior
illustrated in Figure 2.2(a) will be called stable or standard materials; and the
materials possess behavior according to those in Figures 2.2(b) and 2.2(c) will be
called unstable or nonstandard materials.

The normality rule

εp
.

σ σ0

σ - σ0

εp
.

ψ(σ) < 0

Yield surface 
ψ(σ) = 0

Figure 2.3: The normality rule

The plastic strain rates are proportional to the gradient of yield functions at any
point on the smoothed yield surface ψ(σ) = 0, and are normal of yield surface.
If there are singular points on the yield surface where the normal direction is not
unique, the plastic strain vector must lie between adjacent normal at the corners
as Figure 2.3. When n yield surfaces intersect at a singular point, formulae (2.1) is
replaced by

ε̇ =
n∑
i=1

µ̇
∂ψ

∂σ
(2.4)
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The convexity

From Figure 2.3, it can be seen that corresponding to any stress σ0 lies on the
outward side of the tangent, Drucker’s inequality will be violated. In other word, if
all of elastic stresses lie on one side of the tangent, the yield surface is convex. The
material obeying to Drucker’s postulate is required that its yield function ψ(σ)
must be convex in the stress space σ. The convexity plays an important role in
plasticity theory allowing the use of convex programming in direct analysis.

Yield criterion

A yield criterion defines the limit of elasticity under the complex stress state.
For isotropic materials, the direction of principle stresses are independent with type
of materials, thus the yield criterion can be preformed in terms of principle stresses
as

ψ(σ1, σ2, σ3) = k (2.5)

where k denotes the material constant, for example k = σp in case of unaxial tension
loading, or k = τp for unaxial shear loading.

For perfectly plastic materials, the yield function is independent with plastic
strain rate, and due to the physical isotropic characteristic, it depends on the in-
variant of stress tensor. The yield criterion can be rewritten as

ψ(I1, J2, J3) = k (2.6)

where I1 is the first stress invariant; J2 and J3 are the second and third invariant
of deviatoric stress tensor.

In various problems, the results from experience demonstrate that for several
materials, e.g. metal, the influence of hydrostatic stress is negligible. As a result,
the yield function depends on the deviatoric stress tensor only, it means

ψ(J2, J3)− kv = 0 (2.7)

where k2
v = σp√

3
, with σp is the yield stress obtained form the unaxial tension test.

There are various yield criterion have been proposed for amount of materials,
e.g. the Tressca or von Mises for metal, Drucker-Prager or Nielsen for reinforced
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concrete materials, Mohr-Column for soil, etc.

2.1.2 Variational principles

Consider an elastic-perfectly plastic or rigid-perfectly plastic body bounded by
volume V with kinematic boundary Ωu where displacement components are con-
strained (Dirichlet boundary) and static boundary Ωt where stress components are
known (Neuman boundary) such that Ωu ∪ Ωt = V , Ωu ∩ Ωt = ∅. The structure is
subjected to the body force f and surface load t as Figure 2.4.

Ωt

Ωu

t

f

V

Figure 2.4: The equilibrium body

The basic concepts

A stress field σ is called admissible static if it satisfies the equilibrium condition
and static boundary condition

∇σ = f in V (2.8a)
nσ = t on Ωt (2.8b)
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where ∇ is the differential operator.

∇ =



∂

∂x
0 0 ∂

∂y
0 ∂

∂z

0 ∂

∂y
0 ∂

∂x

∂

∂z
0

0 0 ∂

∂z
0 ∂

∂y

∂

∂x


(2.9)

and n represents the outward normal matrix of surface Ωt

n =


nx 0 0 ny 0 nz

0 ny 0 nx nz 0
0 0 nz 0 ny nx

 (2.10)

A stress field σ is called plastically admissible if the yield condition is not violated
at anywhere

ψ(σ) ≤ 0 (2.11)

A strain velocity field ε̇ is called kinematically admissible if it satisfies the com-
patible condition and kinematic boundary condition

ε̇ = ∇u̇ in V (2.12a)
u̇ = 0 on Ωu (2.12b)

A strain velocity field ε̇ is called plastically admissible if strain vector is the
normal of the yield surface and the external work is positive

ẆE =
∫
V

f u̇dV +
∫

Ωu

tu̇dΩu > 0 (2.13)

Markov’s principle

Following Markov, among all kinematically admissible and incompressible strain
fields, the actual strain field will minimize the functional

ψ(u̇) =
∫
V
Dp(ε̇)dV︸ ︷︷ ︸
WI

−
[∫
V

f u̇dV +
∫

Ωu

tu̇dΩu

]
︸ ︷︷ ︸

WE

(2.14)
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where WI and WE are the power of internal load and external load, respectively;
Dp(ε̇) denotes the plastic dissipation function defined by

Dp(ε̇) = max
σ
σε̇ such that ψ(σ) ≤ 0 (2.15)

By solving problem (2.15), the stress state σ(ε) corresponding to the strain field
ε̇ obeyed the normality rule will be obtained. The plastic dissipation function is
now rewritten as

Dp(ε̇) = σ(ε)ε̇ (2.16)

Noting that functionDp(ε̇) depends on the materials and the yield criterion used.

Hill’s principle

Following Hill, among all statically and plastically admissible stress fields, the
actual field will minimize the functional

Π(σ) = −
∫

Ωu

(nσ)u̇dΩ (2.17)

It is interesting to note that the consequences of principles formulated by Markov
and Hill are well-known as the upper bound and lower bound of direct analysis which
will be recalled following.

2.2 Shakedown analysis

In practice, structures can be subjected to various different forms of mechanical
or thermal loading, for example monotonic or proportional loads, repeat loads, or
even arbitrarily varying loads. Therefore, the failure of structures can be caused by
various reasons. Under different intensities of applied loads, several behaviors of the
structures can be obtained as follow

1. The respond of structure is only perfectly elastic if the load intensities are
significantly small (Figure 2.5(a)).

2. If intensities of load beyond the elastic limit but are not too high, the plastic
deformation occurs, increases and stops after some cycles. The behavior of
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structure becomes elastic again. That state is called shakedown or adaptation
(Figure 2.5(b)).

3. Under the load which is higher than the elastic limit, plastic deformation occurs
and develops but it is not stable, the total strain is too large and structure
becomes unserviceable. The phenomenon is called incremental collapse (Figure
2.5(c)).

4. Another behavior is called alternating plasticity. The plastic deformation change
sign after every loading cycle, so the total strain is kept in small value. The
structure will fail after a number of cycles because of the low-cycle fatigue
failure (Figure 2.5(d)).

5. The structure can be collapse at the first cycle of loading due to the intensity
of applied load is higher than its instantaneous load-carrying capacity. This
situation is called plastic collapse (Figure 2.5(e)).

σ

ε

(a) Perfectly elastic

σ

ε

(b) Shakedown

ε

σ

(c) Incremental collapse

σ

ε

(d) Alternating plasticity

σ

ε

(e) Plastic collapse

Figure 2.5: The different behaviors of structures under the cycle load
.

Viewing the above-mentioned situations, it can be observed that two-first cases
may not dangerous; however, shakedown behavior (Figure 2.5(b)) thoroughly ex-
ploits the capacity of materials.

Consider a body made of elastic-perfectly plastic materials and is subjected to
a load F. The displacement and deformation are assumed to be small enough to
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ignore the geometrical change in equilibrium equations. The external load F are
decomposed into two parts including body force f and surface load t. Denoting
F0(f0, t0) for the initial load applying to the structure, thus

F = λF0 (2.18)

where λ is the load multiplier; the load F is assumed that proportionally increase
with λ. Denoting Ωu and Ωt for the kinematic and static of body, stress and strain
components must satisfy the equilibrium condition, the compatibility condition as
well as the kinematic and static boundary conditions completely

σ + f = 0 in V (2.19a)
ε̇ = ∇u̇ in V (2.19b)

nσ = t on Ωt (2.19c)
u̇ = u̇ on Ωu (2.19d)

where u̇ is the deformation velocity; u̇ is the known displacement velocity value; n is
the outward normal of static boundary Ω; σ and ε are stress and strain components,
respectively.

The development of shakedown analysis bases on the fundamentals of the kine-
matic and static theorems well-known as the upper bound and lower bound of direct
method.

2.2.1 Upper bound theorem of shakedown analysis

Using plastic strain field, the kinematic theorem of shakedown analysis was for-
mulated by Koiter [15]. Following Koiter, the plastic strain rate ε̇p is not required
to satisfy the compatibility condition at each instant during the cycle, but the total
plastic deformation ∆ε̇p accumulated after each cycle must satisfy the kinematically
compatible condition, it means

∆ε̇p =
∫ T

0
ε̇pdt in V (2.20a)

∆ε̇p = ∇∆u̇ on Ωu (2.20b)

ẆE =
∫ T

0
dt
[∫
V

f u̇dV +
∫

Ωt

tu̇dΩ
]
> 0 (2.20c)
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Theorem 1. Upper bound theorem of shakedown analysis

1. Shakedown may happen if the following inequality is satisfied

∫ T

0
dt
[∫
V

f u̇dV +
∫

Ωt

tu̇dΩ
]
≤
∫ T

0
dt
∫
V
D(ε̇)dV (2.21)

2. Shakedown cannot happen when the following inequality holds

∫ T

0
dt
[∫
V

f u̇dV +
∫

Ωt

tu̇dΩ
]
>
∫ T

0
dt
∫
V
D(ε̇)dV (2.22)

where the plastic dissipation power Dp(ε̇) is given by

Dp(ε̇) = σε̇ (2.23)

Applying the principle of virtual work, the power generated by external load can
be recalculated as

ẆE =
∫ T

0
dt
∫
V
σE(x, t)ε̇pdV (2.24)

with σE(x, t) is the elastic fictitious stress at time t in the loading domain D .

Normalizing external work, the upper bound of shakedown load multiplier can
be obtained by solving the optimization problem

λ+ = min
∫ T

0
dt
∫
V
Dp(ε̇)dV (2.25)

s.t



∆ε̇ =
∫ T

0
ε̇dt

∆ε̇ = ∆∇u̇ in V

∆u̇ = 0 on Ωu

ẆE = 1

(2.26)

2.2.2 The lower bound theorem of shakedown analysis

Shakedown occurs after several first loading cycle when the plastic strains stop
(ε̇p = 0) at everywhere within the structure, and it is in need to introduce a fictitious
residual stress field ρ(x) ensuring that the actual stress field σ(x, t) does not violate
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the yield criterion everywhere

ψ [σ(x, t)] = ψ
[
λσE(x, t) + ρ(x)

]
≤ 0 (2.27)

where
σ(x, t) = λσE(x, t) + ρ(x) (2.28)

Due to the elastic stress σE(x, t) equilibrates to the external load, the residual
stress field ρ(x) must be in self-equilibrium state

∇ρ(x) = 0 in V (2.29a)
nρ(x) = 0 on Ωt (2.29b)

The necessary and sufficient conditions for shakedown are given by Melan [14]
as following theorem.

Theorem 2. Lower bound theorem of shakedown analysis

1. Shakedown occurs if there exists a permanent residual stress field ρ, statically
admissible, such that

ψ
[
λσE(x, t) + ρ(x)

]
< 0 (2.30)

2. Shakedown will not occur if no ρ exists such that

ψ
[
λσE(x, t) + ρ(x)

]
≤ 0 (2.31)

Based on above theorem, a statically admissible residual stress field needs to be
determine to obtain the maximum load domain λ−D , in where the load multiplier
λ− is the lower bound of the actual factor. Now, the shakedown problem can be
considered as maximizing a nonlinear optimization problem

λ = max λ− (2.32)

s.t


∇ρ(x) = 0 in V

nρ(x) = 0 on Ωt

ψ
[
λσE(x, t) + ρ(x)

]
≤ 0 ∀t

(2.33)
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2.2.3 Separated and unified methods

For determining the shakedown limit of structures, there are two popular method:
separated and unified methods. The first procedure assumes that the incremental
collapse and alternating plasticity may occur at the same time. In this model, the
kinematically admissible strain is decomposed into two parts involving alternating
incremental collapse and alternating plasticity. Solving the optimization problem,
the upper bound of plastic shakedown load multiplier will be obtained.

This thesis focuses on the unified model for which the static formulation intro-
duced by Melan [14] will be employed. The obstacle caused by the time-dependent
variables and integrals can be overcome using the convex-cycle theorems relating
to the concept of load domain mentioned following.

2.2.4 Load domain

Shakedown analysis considers structures under nL independent loading processes
P(t) forming a convex polyhedral domain D(x, t) so-called load domain with nL

dimensions and (m = 2nL) vertices. The loading path D(x, t) can be expressed as
a linear combination of loading processes as

P(t) =
nL∑
k=1

µk(t)P0
k (2.34)

with P0
k is the initial load; the parameter µk(t) can be given by

µk(t) ∈
[
µ−k , µ

+
k

]
, k = 1, 2, . . . , nL (2.35)

Solving the optimization problems (2.26) and (2.33), in order to overcome the dif-
ficulty generated by the appearance of time-dependent variables and time-dependent
integrals, Konig and Kleiber [185] introduced the convex-cycle theorems as follows

Theorem 3. Shakedown will happen over a given load domain D if and only if it
happens over the convex envelope of D.

Theorem 4. Shakedown will happen over any load path within a given load domain
D if it happens over a cyclic load path containing all vertices of D .

Figure 2.6(a) and 2.6(b) illustrate the uses of load cycle for structures subjected
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Figure 2.6: Loading cycles in shakedown analysis

to two independent loads. Above convex-cycle theorems has shown that it is suffi-
cient to consider only the vertices of the convex polyhedral loading domain instead
of time-dependent analysis. The expressions (2.26) and (2.33) for shakedown anal-
ysis can be reformulated as

1. Upper bound shakedown analysis

λ+ = min
m∑
k=1

∫
V
Dp(ε̇)dV (2.36)

s.t



∆ε̇ =
m∑
k=1
ε̇

∆ε̇ = ∆∇u̇ in V

∆u̇ = 0 on Ωu

ẆE =
m∑
k=1

∫
V
σE

(
x, P̂k(x)

)
ε̇pdV

(2.37)

2. Lower bound shakedown analysis

λ = max λ− (2.38)

s.t


∇ρ(x) = 0 in V

nρ(x) = 0 on Ωt

ψ
[
λσE

(
x, P̂k(x)

)
+ ρ(x)

]
≤ 0 ∀k = 1, 2, . . . ,m

(2.39)

It is important to note that when there is only one loading point, i.e., m = 1,
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shakedown formulations will be reduced to a limit analysis problem presented in
the following section.

2.3 Limit analysis

As above mentioned, limit analysis is a special case of shakedown ones when
the structures are subjected to instantaneous loads increasing gradually until the
collapse appears. Similar to shakedown analysis, the limit load multiplier λ can be
determined using one of two opposite formulations based on the bounding theorems.

2.3.1 Upper bound formulation of limit analysis

A kinematically admissible displacement velocity field is assumed. The upper-
bound limit analysis of structures can be determined by solving the optimization
problem

λ+ = min
∫
V
Dp(ε̇)dV (2.40)

s.t


ε̇ = ∇u̇ in V

u̇ = 0 on Ω

ẆE = 1

(2.41)

For convenience and simplicity, from now, displacement/strain rate or velocity
is termed displacement/strain, and the plasticity dissipation as well as the external
work relating to displacement velocity are also performed in terms of displacement
or strain. The upper bound formulation of limit analysis (2.41) can be rewritten as

λ+ = min
∫
V
D(ε)dV (2.42)

s.t


ε = ∇u in V

u = 0 on Ωu

WE = 1

(2.43)
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2.3.2 Lower bound formulation of limit analysis

A statically admissible stress field σ is assumed. The lower bound limit load
multiplier will be obtained if the yield criterion is not violated everywhere, and the
static formulation of limit analysis can be expressed as

λ− = max λ (2.44)

s.t


∇σ = 0 in V

nσ = t on Ωt

ψ(σ) ≤ 0 in V

(2.45)

In order to obtain the limit and shakedown load multipliers, the formulations
(2.26, 2.33) and (2.43, 2.45) can be solved using various optimization tools. In
this thesis, the so-called primal-dual interior point algorithm will be utilized. The
problems will be cast as second order cone programming (SOCP) and solved using
the commercial software package named Mosek integrated in Matlab programming.

2.4 Conic optimization programming

Conic optimization is a sub-field of convex optimization, where linear function
is minimized over the intersection of an affine subspace and a convex cone. A set
K in vector space V is called a cone if

∀x ∈ K , λ > 0⇒ λx ∈ K (2.46)

where the cone is considered with the following properties

• The cone K is convex if and only if: ∀x,x′ ∈ K , λ > 0, λ′ > 0⇒ λx + λ′x′ ∈
K

• The cone K is non-empty and closed if: x,x′ ∈ K ⇒ x + x′ ∈ K

• The cone K is pointed if it contents the original point: x,−x ∈ K ⇒ x = 0

Recently, several relevant models of conic programming developed for treatment
of convex functions [51] can be listed following
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• The non-negative orthant

K ≡ <n+ = {x ∈ <n|xi ≥ 0, i = 1, . . . , n} (2.47)

• The standard second-order cone (Lorentz or ice-cream)

K ≡ L n
q = {x ∈ <n|x1 ≥ ‖x2→n‖L2} (2.48)

• The rotated quadratic cone

K ≡ L n
r = {x ∈ <n|x1x2 ≥ ‖x3→n‖2

L2, x1, x2 ≥ 0} (2.49)

• The semi-definite cone

K ≡ S n
+ = {X ∈ <n×n|X � 0,X = XT} (2.50)

with � is used to the positive semi-definite matrix.

The dual form K ∗ of the cone K can be defined by

xTy ≥ 0,∀x ∈ K ⇔ y ∈ K ∗ (2.51)

and the cone will be self-dual if K = K ∗.

Following Ciria et al. [175], BenTal and Nemirovski [51], almost yield criterion
can be formulated in terms of conic programming consisting of the linear objective
and conic constrains. The primal and dual formulations of conic programming can
be recalled as

• Primal formulation

λ = min cTx

s.t.


Ax = b

x ∈ K = K1 ×K2 × . . .×KN

(2.52)
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• Dual formulation

λ = max bTy

s.t.


ATy + s = c

x ∈ K ∗ = K ∗
1 ×K ∗

2 × . . .×K ∗
N

(2.53)

where x,y ∈ <n are the optimization variable vectors; A ∈ <m×n,b ∈ <m, c ∈ <n

are the parameters; s ∈ <n denotes the additional variables for problems.

Several common conic programming widely used for solving the optimization
problems can be can be now expressed as

• Linear programming (LP): K ≡ <n+

• Second-order cone programming (SOCP): K ≡ L n
q or K ≡ L n

r

• Semi-definite programming (SDP): K ≡ S n
+

where LP is the particular case of SOCP, and both models can be cast as a SPD.

2.5 Homogenization theory

In homogenization analysis, material is considered under the connection between
two scales involving down-scale from macro-level to micro-level (localization) and
up-scale from micro-level to macro-level (globalization). For macro-to-micro trans-
lation, the macroscopic features are transformed to micro-structure as the boundary
conditions. By the opposite direction, the microscopic properties are transformed
to macro-structure via the average.

Let consider a heterogeneous micro-based cell Ω ∈ R2 so-called the representa-
tive volume element (RVE) at every material point x ∈ V , where V ∈ R2 denotes
the heterogeneous macroscopic-continuum. The micro-structure is subjected to the
body force f , the surface load t on the static boundary Γt and fixed by the dis-
placement field u on the kinematic boundary Γu. The material response of macro-
structure is determined by solving the macro-micro transitions problems, where the
RVE size plays an important role in the analysis. The RVE dimension must be sig-
nificantly great to describe the material properties, but significantly small to ensure
that the heterogeneity is separately identified. Actually, the size of microscopic base
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cell is very small compared with those of macro-scale; therefore, the body force f
can be neglected in the micro-scale problem.

Heterogeneous material Homogenized material

RVE

Down-scale
Up-scale

X1

X2

X1

X2

x1

x2

Figure 2.7: Homogenization technique: correlation between macro- and micro-scales

The micro-scale problem can be treated as the boundary value one in solid me-
chanics, where the overall strain E are transferred to micro-structure in form of
kinematic boundary constrains. At microscopic scale, the local fields is decomposed
into two parts: mean term and fluctuation term. Denoting X for the positional
matrix of each material point in the computational domain, the local displacement,
strain and stress are now given by

u(x) = E.X + ũ(x) (2.54a)
ε(x) = E + ε̃(x) (2.54b)
σ(x) = Σ + σ̃(x) (2.54c)

where Σ is the overall stress; ũ(x), ε̃(x) and σ̃(x) denote the fluctuation parts of
displacement, strain and stress rate.

For the purpose of enforcing the boundary condition, this study uses the the most
efficient in terms of convergence rate so-called periodic procedure, where there are
the periodicity of fluctuation displacement field and anti-periodicity of traction field
on RVE boundary

ũ(x+) = ũ(x−), on Γu (2.55a)
t(x+) = −t(x−), on Γt (2.55b)

where ũ(x+) and ũ(x−) are the fluctuation displacement field, t(x+) and t(x−) are
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the traction field of positive and negative boundaries, respectively.

Note that, regarding to the periodic characteristic of the fluctuation terms, the
average of ε̃(x) and σ̃(x) over the RVE should vanish, it means

〈ε̃〉 = 0; 〈σ̃〉 = 0 (2.56)

where the operation 〈.〉 stands the volume average of fields over the RVE. Therefore,
the macroscopic quantities can be calculated from the microscopic ones by the
average relations

E ≡ 〈ε〉 = 1
|Ω|

∫
Ω
εdΩ (2.57a)

Σ ≡ 〈σ〉 = 1
|Ω|

∫
Ω
σdΩ (2.57b)

herein, |Ω| denotes the area of RVE.

In direct analysis, for any admissible velocity and stress field satisfying the peri-
odic and anti-periodic conditions on boundary, the principle of macroscopic virtual
work can be expressed as

〈σ : ε〉 = Σ : E (2.58)

2.6 The iRBF-based mesh-free method

As mentioned in the beginning of the chapter, iRBF method is the key numerical
scheme for solving all problems in the thesis. The smooth function u(x) can be
approximated based on a given set of N scattered nodes and the iRBF method as

uh(x) =
N∑
I=1

ΦI(x)uI (2.59)

where ΦI(x) is the iRBF shape function; uI denotes the nodal values. In here,
the iRBF can be understand as the integrated or indirect radial basis functions.
The reason for which iRBF method is called indirect procedure is the strategy to
construct the shape function clarified following.
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2.6.1 iRBF shape function

In this thesis, the RBF functions will be employed to construct the second-order
derivative of shape function, then the first-order and the original functions will be
calculated using the integrals as

uh,αβ(x) =
N∑
I=1

gI(x)aI = R2(x)a (2.60)

uh,α(x) =
∫ N∑

I=1
gI(x)aIdxβ + C1 =

N+n1∑
I=1

R1I(x)aI = R1(x)a (2.61)

uh(x) =
∫∫ N∑

I=1
gI(x)aIdxβdxα + C1xj + C2 =

N+n2∑
I=1

R0I(x)aI = R0(x)a (2.62)

where C1 and C2 are the integral constants; n1 and n2 represent number of integral
constants (n2 = 2n1); a is the vector consisting the unknowns.

R2(x) = [g1(x), g2(x), ..., gN (x), 0, ..., 0︸ ︷︷ ︸
n2

] (2.63a)

R1(x) = [R11(x), R12(x), ..., R1(N+n1)(x), 0, ..., 0︸ ︷︷ ︸
n1

] (2.63b)

R0(x) = [R01(x), R02(x), ..., R0(N+n2)(x)] (2.63c)

with R0i, R1i can be found in [152, 153].

This thesis uses the multiquadric (MQ) basis function well-known as the best
iRBF function in terms of accuracy

gI(x) =
√
r2
I(x) + (αsdI)2 (2.64)

where rI(x) is the radius of node I and other ones in its influent domain; dI is
the minimum distance measured form node I to its neighbours; αs > 0 is the
dimensionless factor used to control the shape parameter αsdI .

Estimating the function at the set of N scattered points, Equation (2.62) can be
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rewritten in terms of matrix form as

u = R0a (2.65)

where

R0 =


· · · · · · · · · · · ·

R01(xk) R02(xk) · · · R0(N+n2)(xk)
· · · · · · · · · · · ·

 (2.66)

As a result, vector a can be expressed via the nodal values u = [u1 u2 ... uN ] as

a = R−1
0 u = Ψ̂Iku (2.67)

Substituting a into Equations (2.60) - (2.62), the approximate function and its
derivatives are recalculated as

uh(x) = R0(x)Ψ̂Iku = Φu (2.68a)
uh,α(x) = R1(x)Ψ̂Iku = Φ,αu (2.68b)
uh,αβ(x) = R2(x)Ψ̂Iku = Φ,αβu (2.68c)

where the shape function and its derivatives can be defined by

Φs(x) =
N∑
I=1

R0I(x)ψ̂Is (2.69a)

Φs,α(x) =
N∑
I=1

R1I(x)ψ̂Is (2.69b)

Φs,αβ(x) =
N∑
I=1

gI(x)ψ̂Is (2.69c)

with ψ̂Is is the element (I, s) within matrix R−1
0 .

The iRBF method overcomes an important obstacle of almost meshless methods
in enforcing the essential boundary condition caused by the lack of Kronecker-delta
property. Moreover, the high-order shape function obtained owing to the integration
also helps to improve the computational aspect of numerical approach.
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(a) ΦI(x) (b) ΦI,x(x) (c) ΦI,y(x)

(d) ΦI,xx(x) (e) ΦI,yy(x) (f) ΦI,xy(x)

Figure 2.8: The iRBF shape function and its derivatives

2.6.2 The integrating constants in iRBF approximation

In indirect RBF formulation, the approximate function uh(x) is calculated by
the multiple integration; therefore, after each step, the new constants C1 and C2

appear. In this thesis, the integrating constants will be computed using the similar
way to those carried out for the approximate function uh(x), it means the multiple
integrals will be utilized as

Ch
,jk(x) =

N∑
I=1

gI(x) (2.70a)

Ch
,j(x) =

∫ N∑
I=1

gI(x)dxk + Ĉ1 (2.70b)

Ch(x) =
∫∫ N∑

I=1
gI(x)dxkdxj + Ĉ1xj + Ĉ2 (2.70c)

Herein, two new constant Ĉ1 and Ĉ2 will occur, and strictly, those must be
calculated. However, thank to the constants C1 and C2 have been approximated,
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for simplify, Ĉ1 and Ĉ2 can be ignored without effect on the approximation of the
iRBF shape function.

It should be note that, in RPIM approximation, the radial basis cannot produce
the linear polynomials exactly; consequently, the polynomials must be added into
the basis functions to ensure the consistency of shape function. In other words,
that makes sure the reproduction of the approximated field, and hence, helps to
pass the standard patch tests, more details can be found in [156]. In this study,
with the use of integrals when constructing shape functions, the constants C1 and
C2 are generated evidently, making the iRBF approximation passes the patch tests
naturally. However, it’s worth noting that the patch test is neither sufficient nor
necessary for convergence of numerical solutions [186], and many finite elements are
widely used in FEM packages without passing this test [156].

2.6.3 The influence domain and integration technique

In order to evaluate the efficiency of a numerical method, it is necessary to
consider not only the accuracy, stability and convergence of solutions but also the
the computational cost. In mesh-free method, that depends on the influence or
support domain and the technique to handle the integration.

The influence or support domain is defined as an area where a node or a point
exerts an influence upon, but it is necessary to distinguish clearly between support
and influence domains in meshless methods. The concept of support domain is used
for the purpose of interpolating a value at a point. That domain is usually a small
local field including a number of nodes in the problem domain. As an alternative
way to select nodes for interpolation, the influence domain is defined for each node
in the problem domain. In mesh-free methods, the influence domain can be global
or local, and the density of the nodes depends on the accuracy requirement of the
analysis and the resources available. The global domain enclosing all nodes in the
problem domain ensures the continuity and ability to approximate and interpolate
functions; hence the highly accuracy solutions can be obtained. However, using lots
of nodes, the matrix of shape function and constrains in the problem will become
densely increasing the expense of computation. In the opposite direction, the com-
pact domain makes sure the local property and reduces the computational cost
significantly, but it requires enough nodes to avoid the inaccuracy and singularity
when approximating the shape function and interpolating nodal values. There are
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several technique to determine the influence domain in mesh-free methods. The
shapes of the domain mostly used are circular or rectangular. Since this thesis uses
the radial basis function, the circular domain will be utilized as shown in Figure
2.9(a). The size of this domain can be operated using formulae (1.1) presented in
previous chapter.

(a) The influence domain (b) The representative domain

Figure 2.9: The influence domain and representative domain of nodes

In several mesh-free methods, the background cells can be utilized to create the
Gauss points where the computation will be implemented on. However, as discussed
in previous chapters, this work does not ensure the truly meshless feature. In addi-
tion, a very fine mesh generating a number of Gauss points is required to obtained
the good solutions, and hence the cost increases. Several meshless procedures in
strong form use the collocation method, the constrains will be enforced and satis-
fied directly at scattered nodes. Consequently, the expense for the computation can
be reduced significantly. Beside the advantage owing to the simplicity in implemen-
tation, the well-known drawback of strong form methods is the lack of stability and
accuracy. In this thesis, a weak form using the stability conforming nodal integra-
tion (SCNI) technique [166] is employed, all constrains will be directly imposed at
nodes instead of Gauss points. This scheme not only keeps the size of problems in
a minimum but also ensures to obtain the solutions with high accuracy, stability
and convergence.

Using SCNI technique, each node will has a integration area so-called represen-
tative domain ΩJ . For convenience, this domain can be determined using Voronoi
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diagram as illustrated in Figure 2.9(b). The smoothed version of strain rate at node
ε̃hij(xJ) can be calculated by

ε̃hij(xJ) =
∫

ΩJ

εij(x)ϕ(x,x− xJ)dΩ (2.71)

where ϕ is the smoothed function satisfying the condition

ϕ > 0 and
∫

ΩJ

ϕdΩ = 1 (2.72)

For simplicity, assuming that the function ϕ is a constant over the representative
domain

ϕ(x,x− xJ) =


1
AJ

if x ∈ ΩJ ,

0 if x /∈ ΩJ .
(2.73)

where AJ is the area of domain ΩJ .

Substituting ϕ in (2.73) into (2.71), then applying the Green’s theorem to trans-
fer the integral over domain to the line integral, the smoothed strain rate can be
rewritten as

ε̃hij(xJ) = 1
AJ

∫
ΩJ

1
2
(
uhi,j + uhj,i

)
dΩ

= 1
2AJ

∮
ΓJ

(
uhi nj + uhjni

)
dΓ (2.74)

where ΓJ is the boundary of the representative domain; ui and uj are the displace-
ment components; n is the outward normal of edges bounding domain ΩJ as Figure
2.10.

In the numerical implementation, the smoothed strain ε̃(xJ) can be expressed via
the relation to the displacements according to the compatible condition as follow

ε̃(xJ) = B̃d (2.75)

where d is the displacement vector; B̃ is the displacement-strain matrix including
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Figure 2.10: The SCNI technique in a representative domain

the smoothed derivatives of shape function

Φ̃I,α(xJ) = 1
AJ

∮
ΓJ

ΦI(xJ)nα(x)dΩ

= 1
2AJ

ns∑
k=1

(
nkαL

k + nk+1
α Lk+1

)
ΦI(xk+1

J ) (2.76)

where ns is number of edges; ΦI(xkJ) and ΦI(xk+1
J ) are the shape function relating

to two end of the edge Γk of Voronoi; Lk and nk are the length and the normal of
edge Γk.

In several problems, the high-order derivatives of shape function may be in need
due to the variables can be the high-order derivatives of displacement, for example in
bending plate problem, the curvature variables κ(x) are the second-order derivative
of the deflection w(x). Similarly, the smoothed version of second-order derivatives
of shape function can be calculated from the first-order ones as

Φ̃I,αβ(xJ) = 1
2AJ

∮
ΓJ

(ΦI,α(xJ)nβ(x) + ΦI,β(xJ)nα(x)) dΩ

= 1
4AJ

ns∑
k=1

(
nkβL

k + nk+1
β Lk+1

)
ΦI,α(xk+1

J )

+ 1
4AJ

ns∑
k=1

(
nkαL

k + nk+1
α Lk+1

)
ΦI,β(xk+1

J ) (2.77)

with ΦI,α(x) and ΦI,β(x) are the first-order derivatives of shape function ΦI(x)
relating to variables α and β.
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Chapter 3

Displacement and equilibrium mesh-free
formulation based on integrated radial basis

functions for dual yield design 1

3.1 Introduction

This chapter presents an application of iRBF-based mesh-free method for plane
structures at limit state using both of kinematic and static formulations. A lower
bound on the actual limit load of a structure or body can be achieved by using the
static theorem and approximated stress fields, while the upper bound is obtained
as a result of combining displacement-based model and kinematic theorem [93]. In
the static yield design formulation, the assumed stress fields are often expressed
in terms of nodal stress values. In the framework of equilibrium finite elements,
these approximated fields are also required to satisfy a priori equilibrium condi-
tions within elements and at their interfaces [36, 58, 93, 187, 188]. Due to these
additional conditions, construction of such fields is often difficult. Compared with
the equilibrium models, the displacement formulation is more popular. This may
be because of the facts that the internal compatibility condition can be satisfied
straightaway in the assembly scheme, and that essential (kinematic) boundary con-
ditions can be enforced directly.

Unlike FEM, mesh-free methods does not encounter the obstacle of enforcing the
equilibrium conditions thank to their independence to elements, and hence the dis-
placement as well as equilibrium formulations can be used easily. The EFG method,
one of the most widely used mesh-free methods, has been applied successfully to

1based on P. L. H. Ho, C. V. Le, and T. Tran-Cong, “Displacement and equilibrium mesh-free
formulation based on integrated radial basis functions for dual yield design,” Eng. Anal. Bound.
Elem., vol. 71, pp. 92–100, Oct. 2016.
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the framework of yield design problems [90, 92–95], showing that the method is, in
general, well suited for yield design problems and that accurate solutions can be ob-
tained with a minimal computational cost. However, a typical limitation of the EFG
method is that its shape functions do not hold Kronecker delta property, leading to
difficulty in enforcing essential boundary conditions. An other mesh-free procedure
so-called NEM has been applied for limit analysis in [88, 89]. Possessing a weak
form of Kronecker-delta property at the boundary, NEM shows more advantage
than EFG in imposing the boundary conditions. Using the stricter Kronecker-delta
property compared with NEM, RPIM has been also extent to this area in [96].

The aim of this study is to investigate the performance of the integrated radial
basis function-based mesh-free method in the framework of yield design problems.
The iRBF approach will be employed to approximate both displacement and stress
fields. Multiquadric iRBF method generally results in a high order approximation of
the displacement fields, and hence volumetric locking phenomena in the kinematic
yield design formulation can be prevented. Moreover, the stress fields constructed
based on iRBF are smooth over the entire problem domain, and consequently there
is no need to enforce continuity conditions at interfaces within the problem domain.
With the use of iRBF-approximated stress fields the strong-form of equilibrium
equations can be satisfied in a point-wise manner using a collocation method. In
addition, the iRBF-based approximation possesses the Kronecker delta property as
in RPIM, but the order of iRBF shape function is higher than RPIM ones when
using similar basis function. As a result, kinematic and static boundary conditions
can be imposed as easily as in the finite element method. Finally, the kinematic
and static formulations based on iRBF discretization are formulated as a conic
optimization problem, ensuring that they can be solved using available efficient
solvers.

3.2 Kinematic and static iRBF discretizations

Consider an elastic-plastic body of area Ω ∈ R2, with fixed boundary Γu and
free portion Γt such that Γu∪Γt = Γ, Γu∩Γt = ∅, and is subjected to a body force
f in Ω and surface traction t on Γt. The structure is investigated in both kinemat-
ically and statically admissible spaces. The iRBF-based mesh-free method will be
utilized to approximate the statically admissible stress field as well as the kinemat-
ically displacement velocity field. As presented in previous chapter, for simplify, the
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displacement velocity field will be briefly called displacement field.

3.2.1 iRBF discretization for kinematic formulation

For the upper bound analysis at limit state, the displacement field can be ap-
proximated via the nodal values as

uh(x) =
 u
v

 =
N∑
I=1

ΦI(x)
 uI
vI

 (3.1)

where, ΦI(x) denotes the iRBF shape function.

The strain rate are calculated by

ε =


εxx

εyy

γxy

 =



N∑
I=1

ΦI,x(x) 0

0
N∑
I=1

ΦI,y(x)

N∑
I=1

ΦI,y(x)
N∑
I=1

ΦI,x(x)



 uI
vI

 = B(x)d (3.2)

where d is the nodal displacement vector; B is called displacement-strain matrix
and given by

dT = [u1, u2, ..., un, v1, v2, ..., vn] (3.3a)

B =


Bxx

Byy

Bxy

 =


Φ1,x Φ2,x ... ΦN,x 0 0 ... 0

0 0 ... 0 Φ1,y Φ2,y ... ΦN,y

Φ1,y Φ2,y ... ΦN,y Φ1,x Φ2,x ... ΦN,x

 (3.3b)

For von Mises yield criterion, the dissipation power can be formulated as

Dp(ε) =
∫

Ω
σp
√
εTΘε =

N∑
I=1

σpAI
√

(BId)TΘBId (3.4)

where σp is the yield stress of materials; AI is area of the representative domain
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I th, e.g. Voronoi cells; N denotes number of nodes in problem domain and

Θ = 1
3


4 2 0
2 4 0
0 0 1

 for plane stress problem (3.5)

or

Θ =


1 −1 0
−1 1 0
0 0 1

 for plane strain problem. (3.6)

Using SOCP, a sum of norm can be employed to calculate the internal dissipation
work as

Dp =
N∑
I=1

σpAI‖ρI‖ (3.7)

with ρI denotes the additional variables defined by

ρI =




ρ1

ρ2

ρ3

 = 1√
3


2 0 0
1
√

3 0
0 0 1

BId for plane stress;

 ρ1

ρ2

 =
 BxxId−ByyId

2BxyId

 for plane strain.

(3.8)

Now, the optimization can be rewritten as follow

λ+ = min
N∑
I=1

σpAI‖ρI‖ (3.9)

s.t


d = 0 on Γu
F (d) = 1

(3.10)

Introducing additional variables t1, t2, ..., tN , problem (3.10) can be reformulated
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in form of second-order cone programming as

λ+ = min
N∑
I=1

σpAItI (3.11)

s.t


d = 0 on Γu
F (d) = 1

‖ρI‖ ≤ tI , I = 1, 2, ..., N

(3.12)

Note that for plane strain problems, incompressibility conditions, ∆T ε = 0 with
∆T = [1, 1, 0], must be introduced. If low-order displacement approximations are
used, volumetric locking phenomena in the kinematic formulations associated with
the von Mises may occur due to these incompressibility conditions. However, here
the iRBF method results in high-order displacement fields, and hence volumetric
locking problem can be prevented. Moreover, it is evident that the size of optimiza-
tion problem (3.12) depends on the number of integration points to be used. In this
study, the nodal integration technique is used, and hence the size of the resulting
optimization problem is kept to be minimum.

3.2.2 iRBF discretization for static formulation

While in the upper bound formulation the displacement fields are approximated,
here the stress fields need to be approximated. With the use of the iRBF method,
approximations of these stress fields can be presented as

σh(x) =


σhxx

σhyy

σhxy

 =
N∑
I=1

ΦI(x)


σxxI

σyyI

σxyI

 = Cs (3.13)

where

sT = [σxx1, · · · , σxxN , σyy1, · · · , σyyN , σxy1, · · · , σxyN ] (3.14a)

C =


Cxx

Cyy

Cxy

 =


Φ1 · · · ΦN 0 · · · 0 0 · · · 0
0 · · · 0 Φ1 · · · ΦN 0 · · · 0
0 · · · 0 0 · · · 0 Φ1 · · · ΦN

 (3.14b)
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These approximated stress fields must be ensured to be statically admissible,
meaning that equilibrium and continuity conditions within elements and on their
boundary must be satisfied. While the strong form of equilibrium equations can
be treated using collocation method, its equivalent weak form (involving integrals)
is often handled using the weighted residual method. The strong-form method is
simple and fast, and hence the collocation method using the iRBF will be consid-
ered in this study. The equilibrium equations can be imposed at N nodes, and are
expressed as 

A1σ1 + A2σ3 = 0

A1σ3 + A2σ2 = 0
(3.15)

with

A1 =


· · · · · · · · · · · ·

Φ1,x(xk) Φ2,x(xk) · · · ΦN,x(xk)
· · · · · · · · · · · ·


N×N

(3.16a)

A2 =


· · · · · · · · · · · ·

Φ1,y(xk) Φ2,y(xk) · · · ΦN,y(xk)
· · · · · · · · · · · ·


N×N

(3.16b)

and

σ1 = [σxx1, σxx2, · · · σxxN ]T (3.17a)
σ2 = [σyy1, σyy2, · · · σyyN ]T (3.17b)
σ3 = [σxy1, σxy2, · · · σxyN ]T (3.17c)

Additionally, the approximated stress fields must belong to a convex domain,
B. In other words, these stress fields must satisfy the following second-order cone
constraints obtaining from the von Mises criterion

σh(x) ∈ B (3.18)
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with

B ≡
{
ρ ∈ R3 | ρ1 ≥ ‖ρ2→4‖2

L =
√
ρ2

2 + ρ2
3 + ρ2

4

}
for plane stress (3.19a)

B ≡
{
ρ ∈ R3 | ρ1 ≥ ‖ρ2→3‖2

L =
√
ρ2

2 + ρ2
3

}
for plane strain (3.19b)

where

ρ1 = σp

ρ2→4 =


ρ2

ρ3

ρ4

 = 1
2


2 0 0
−1

√
3 0

0 0 2
√

3

Cs for plane stress

ρ2→3 =
 ρ2

ρ3

 = 1
2

 Cxx −Cyy

2Cxy

 s for plane strain

(3.20)

Hence the static yield design formulation can now be expressed as

λ = max λ− (3.21)

s.t


A1σ1 + A2σ2 in Ω

A1σ3 + A2σ2 in Ω

ρk ∈ L k k = 1, 2, ..., Np

(3.22)

and accompanied by appropriate boundary conditions.

It should be emphasized that in the present static formulation equilibrium equa-
tions and yield criterion are enforced at nodes only, and therefore the strict property
of the lower bound λ− is not guaranteed. However, using a fine nodal distribution
one can hope to achieve a reliable approximated lower bound on the actual limit
load multiplier. Moreover, by enforcing the equilibrium equations and yield criterion
at nodes only the number of constraints in optimization problem (3.22) is kept to be
minimum, and hence the presented static method is computationally inexpensive.

The whole numerical implementations of both upper and lower bound approaches
are illustrated by flow chart shown in Figure 1.1.
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3.3 Numerical examples

The described procedures are tested by their application to solve various prob-
lems for which, in most cases, exact and numerical solutions are available. Upper
and lower bound solutions based on direct radial basis function (dRBF) are also
carried out for comparison purpose. Optimization problems (3.12) and (3.22) are
implemented in the Matlab environment. Mosek optimization solver version 6.0 is
used to solve the conic optimization problem obtained (using a 2.8 GHz Intel Core
i5 PC running Window 7).

3.3.1 Prandtl problem

The first example is the classical punch problem presented in [189], as shown
in Figure 3.1. Due to symmetry, a rectangular region of dimensions B = 5 and H
= 2 is considered. Appropriate displacement and stress boundary conditions are
enforced as shown in Figure 3.2. For a load of 2τ0, the analytical limit multiplier is
λ = 2 + π = 5.142.

2τ₀
H

B

aa

B

Figure 3.1: Prandtl problem

Approximations of upper and lower bounds on the actual limit load for both
dRBF and iRBF methods with various nodal discretizations are reported in Table
3.1. From these results, it can be seen that for both kinematic and static formula-
tions the iRBF-based method can provide more accurate solutions than the dRBF-
based method. Convergence analysis and relative errors in collapse multipliers ver-
sus number of variables are also shown in Figures 3.3(a) and 3.3(b), respectively.
It should be stressed that the mean values of upper and lower approximations ob-
tained using the iRBF-based numerical procedures are in excellent agreement with
the analytical solutions for all nodal discretizations, as shown in Figure 3.3, with
less than 0.4% even for coarse nodal distribution. Furthermore, as mentioned, the
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present procedure cannot theoretically provide strict lower bound solutions, it is
evident that all approximated lower bound results are below the exact value.

H

B

2τ₀

a

(a) Computational domain

y

u 
=

 0

u 
=

 v
 =

 0

u = v = 0 x

(b) Displacement boundary condition

y
σ x

y 
=

 0
σyy = 0
σxy = 0

x

σyy = 2τ0
σxy = 0

(c) Stress boundary condition

Figure 3.2: Prandtl problem: approximation displacement and stress boundary con-
ditions

Note that in the kinematic formulation, volumetric (or isochoric) locking often
occurs when adding the incompressibility condition to the low-order displacement
based yield design problem. The volumetric locking behavior of the Prandtl yield
design problem has been studied in [78, 95]. In these papers, it has been demon-
strated that when smoothed strains were used, the volumetric locking problem can
be eliminated. Here, we have shown that the iRBF method used in combination
with direct nodal integration can remove such the volumetric locking behavior and
also result in stable and accurate solutions.

In Table 3.2 the solutions obtained using the present methods with 2560 nodes
are compared with those obtained previously by different yield design approaches
using FEM, smoothed finite element (SFEM) and EFG simulations. In general, the
present solutions are close to results in the literature. Considering upper solutions,
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Table 3.1: Prandtl problem: upper and lower bound of collapse multiplier

Nodes
dRBF iRBF

Upper bound Lower-bound Upper bound Lower-bound
λ+ e (%) λ− e (%) λ+ e (%) λ− e (%)

40 6.857 33.35 2.761 46.31 6.036 17.39 4.218 17.97
160 5.548 7.90 4.244 17.46 5.279 2.66 4.960 3.54
360 5.289 2.86 4.800 6.65 5.209 1.30 5.061 1.58
640 5.211 1.34 5.042 1.95 5.191 0.95 5.108 0.66
1000 5.189 0.91 5.125 0.33 5.180 0.74 5.134 0.16

e (%) - relative error

Table 3.2: Prandtl problem: comparison with previous solutions

Author Approach
Collapse load multiplier
λ+ λ−

Present method, iRBF Kinematic, static 5.146 5.140
Present method, dRBF Kinematic, static 5.159 5.133
Makrodimopoulos and Martin [190], FEM Kinematic, static 5.148 5.141
Vicente da Silva and Antao [191], FEM Kinematic 5.264 -
Sloan and Kleeman [192], FEM Kinematic 5.210 -
Le et al. [78], CS-FEM Kinematic 5.143 -
Le et al. [95], EFG Kinematic 5.147 -
Capsoni and Corradi [63], FEM Mixed formulation 5.240
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(a) Bounds on the collapse multiplier
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Figure 3.3: Bounds on the collapse multiplier versus the number of nodes and vari-
ables
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the result obtained using the iRBF method is slightly lower than the one obtained
using the EFG mesh-free method with the same nodal discretization [95].

3.3.2 Square plates with cutouts subjected to tension load

Next, two thin square plates with a central square cutout and a thin crack sub-
jected to a uniform tension load, as shown in Figure 3.4, are considered. These
problems have been investigated numerically by finite elements [193, 194], symmet-
ric Galerkin boundary elements [195], and mesh-free methods [88, 90]. Owing to
the symmetry, only the top- right quarter of plates is modeled, as shown in Figure
3.5. Uniform nodal distribution is used to discretize the computational domain, see
Figure 3.6.

L

L/4

L p

(a) Square cutout

L
L
/2L p

cr
ac
k

(b) Thin crack

Figure 3.4: Thin square plates

pL
/2

L
/8

L/8

L/2

(a) Square cutout

p

L/2

L
/2

L
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(b) Thin crack

Figure 3.5: The upper-right quater of plates
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Limit load multipliers obtained using uniform nodal distributions are reported
in Tables 3.3 and 3.4. Collapse load multiplier versus the number of nodes is also
shown in Figure 3.7. Again, it can be observed that the iRBF-based method can
provide more accurate solutions than the dRBF-based method, particularly for the
static approach.

(a) Square cutout (b) Thin plate

Figure 3.6: Uniform nodal discretization
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Figure 3.7: Convergence of limit load factor for the plates

Table 3.5 shows that the results obtained by using RBF methods are in good
agreement with previously reported numerical solutions. Considering upper bound
limit factor, the present results are close to Zhou and Liu’s solutions, with the
maximum error of only 2.79%. It is important to note that the estimated lower
bounds reported in [90, 195] are higher than the present lower bound solutions,
and surpasses the upper bound of the present iRBF method for the plate with
square cutout. This can be explained by the fact that in [90, 195] the strong form
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of the equilibrium equations was transformed into the so-called weak form, and to
be satisfied locally in an average sense using approximated virtual displacement
fields. Therefore, the static method in [90, 195] may result in a higher value than
the actual limit multiplier. In contrast, it is clear that all the present lower bound
solutions obtained are below the upper bounds reported in Table 3.5.

Table 3.3: Collapse multipliers for the square plate with a central square cutout

Number of nodes
dRBF iRBF

Upper bound Lower bound Upper bound Lower bound
273 0.750 0.702 0.734 0.712
589 0.750 0.715 0.732 0.726
851 0.749 0.715 0.732 0.729

Table 3.4: Collapse multipliers for the square plate with a central thin crack

Number of nodes
dRBF iRBF

Upper bound Lower bound Upper bound Lower bound
441 0.520 0.482 0.532 0.499
625 0.516 0.484 0.523 0.502
841 0.514 0.487 0.516 0.504

Table 3.5: Plates with cutouts problem: comparison with previous solutions

Author Approach
Square cutout Thin crack
λ+ λ− λ+ λ−

Present method, iRBF Kinematic, static 0.732 0.729 0.516 0.504
Present method, dRBF Kinematic, static 0.749 0.715 0.514 0.487
Pixin et al. [194], FEM Kinematic 0.764 - 0.534 -
Zhou and Liu [88], NEM-Sibson Kinematic 0.753 - 0.515 -
Zhou and Liu [88], NEM-Laplace Kinematic 0.752 - 0.513 -
Belytschko and Hodge [193], FEM Static - 0.693 - 0.498
Zhang et al. [195], FEM Static - 0.747 - 0.514
Chen et al. [90], EFG Static - 0.736 - 0.513

3.3.3 Notched tensile specimen

Finally, a double notched specimen consists of a rectangular specimen with two
thin cracks under in-plane tensile stresses t0 as shown in Figure 3.8 (W = L =
2a = 1), is also considered. This problem exhibits volumetric locking phenomena
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Figure 3.8: Double notch specimen

[196] and became a popular benchmark test for plastic yield design procedures. The
locking problem was handled using various techniques proposed in the literature,
including higher-order displacement-based finite element method [197], mixed finite
elements [44, 63, 198] and discontinuous elements [59, 192, 199], mesh-free methods
[95], smoothed finite elements [78, 79].

100 200 300 400 500 600 700 800

Number of nodes

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

C
ol

la
ps

e 
m

ul
tip

lie
r

iRBF (upper bound)
iRBF (lower bound)
iRBF (mean value)

dRBF (upper bound)
dRBF (lower bound)
dRBF (mean value)

Figure 3.9: Convergence study for the double notched specimen problem

Owing to the symmetry, only the upper-right quarter of the double notched
problem is discretized. Several uniform nodal distributions are employed. Computed
solutions and convergence analysis are presented in Table 3.6 and Figure 3.9. Table
3.6 compares the present solutions with those obtained previously. The mean values
of the dRBF and iRBF results are 1.1343 and 1.1342, respectively. It can be observed
that these mean values are very close to the benchmark solution obtained using

66



Chapter 3. Displacement and equilibrium mesh-free formulation based on iRBF for dual yield design

Table 3.6: The double notched specimen: comparison with previous solutions

Author Approaoch
Collapse multiplier λ
λ+ λ−

Present method, iRBF Kinematic, static 1.141 1.127
Present method, dRBF Kinematic, static 1.146 1.122
Ciria et al. [175], FEM-uniform mesh Kinematic, static 1.149 1.131
Ciria et al. [175], FEM-adaptive mesh Kinematic, static 1.139 1.132
Le et al. [78], CS-FEM Kinematic 1.137 -
Le et al. [95], EFG Kinematic 1.137 -
Tin-Loi and Ngo [197], FEM Static - 1.166
Krabbenhoft and Damkilde [200], FEM Static - 1.132
Christiansen and Andersen [198], FEM Mixed formulation 1.136

mixed formulation by Christiansen and Andersen [198].

3.4 Conclusions

The present contribution has presented displacement and equilibrium mesh-free
formulation based on integrated radial basis functions (iRBF) for dual yield de-
sign problems. In the kinematic formulation, the high-order approximation of the
displacement fields using the integrated radial basis functions can prevent volu-
metric locking. Moreover, direct nodal integration of the iRBF approximation not
only results in inexpensive computational cost, but also overcomes the instability
problems. In the static formulation, with the use of iRBF approximation of the
stress fields in combination with the collocation method, equilibrium equations and
yield conditions only need to be enforced at the nodes, leading to the reduction in
computational effort. It has been shown in several examples that the mean values
of the iRBF upper and lower bounds are accurate, and can be considered as the
actual collapse load multiplier for most practical engineering problems, for which
exact solution is unknown.
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Chapter 4

Limit state analysis of reinforced concrete slabs
using an integrated radial basis function based

mesh-free method 1

4.1 Introduction

This chapter presents an application of iRBF method for upper bound limit
analysis of structures. This study aims to estimate the limit load as well as col-
lapse mechanics of reinforced concrete slabs. Dealing with that structures, yield
line or discontinuity layout optimization (DLO) methods can be employed. The
element based yield line methods [201–204] have the intrinsic advantage of pro-
viding accurate solutions for many practical engineering problems. However, the
solutions of the element based yield line analysis are highly affected by the initial
mesh topology because the yield-lines are restricted to be formed only at the edges
of elements. Alternatively, discontinuity layout optimization, a generally applica-
ble numerical limit analysis procedure that can be used to automatically identify
the critical yield-line pattern, has been proposed in [205, 206]. However, owing to
their advantages in treating problems of arbitrary geometries, complicated bound-
ary conditions and complex loads, limit analysis procedures based on numerical
discretization techniques has been found to be more popular [58, 64, 93, 207–209]
in solving real-world engineering problems.

In the kinematic formulation, these unknown variables are often approximated in
terms of nodal displacements and rotations. In order to minimize the total number of
the problem degrees of freedom, and hence reduce computational effort, elements

1based on P. L. H. Ho, C. V. Le, and T. Tran-Cong, “Limit state analysis of reinforced concrete
slabs using an integrated radial basis function based mesh-free method,” Appl. Math. Model., vol.
53, pp. 1–11, Jan. 2018.
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without rotational degree of freedom, namely rotation-free elements, have been
proposed by several researchers [210–213]. Taking advantages of such a rotation-
free formulation, various rotation-free mesh-free based models have been proposed
for thin plate structures [214–216]. Recently, a rotation-free formulation, that uses
moving least squares approximation technique, has been developed for collapse
analysis of reinforced concrete slabs [209]. It has been shown that the method can
provide accurate collapse load multipliers with a relatively small number of degrees
of freedom. Its main disadvantage, on the other hand, is the need to specially
treat the kinematic boundary conditions due to the fact that the moving least
squares approximation does not hold the so-called Kronecker delta property. Mesh-
free method based on radial basis functions and point interpolation [217] may be
used to overcome such the difficulty.

In this study, a novel rotational-free mesh-free formulation for limit state anal-
ysis of reinforced concrete slabs is developed. Note that the formulation for limit
analysis of reinforced concrete slabs is very much different from those of plane prob-
lems, i.e., the formulation to determine the internal dissipation, the yield criterion
used, and boundary conditions. The transverse velocity field is approximated by
using the integrated radial basis functions (iRBF), particularly the multiquadric
basis, and there is no rotational degree of freedom involved in the approximation.
The resultant shape functions satisfy the Kronecker delta property, and hence dis-
placement boundary conditions can be enforced in a way similar to one in the finite
element method. The obtained discrete kinematic problem for limit state analysis of
reinforced concrete slabs governed by Nielsen’s yield criterion is handled using avail-
able highly efficient solvers. Several reinforced concrete slabs of arbitrary geometries
and different boundary conditions are examined, demonstrating that the proposed
numerical procedure can provide accurate collapse load multipliers, and showing
that yield-patterns in terms of plastic dissipation distribution can be automatically
identified.

4.2 Kinematic formulation using the iRBF method for rein-
forced concrete slab

Consider a thin reinforced concrete slab of area Ω, with kinematic boundary
Γu. In the kinematic formulation, the approximation of the velocity field can be
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expressed in terms of nodal velocities within the computational domain as follows

uh(x) =
N∑
I=1

ΦI(x)uI (4.1)

The related rotations and curvatures are directly computed by differentiating
the approximated velocity function as

θhα : = uhα(x) =
N∑
I=1

ΦI,α(x)uI (4.2a)

κhαβ : = uhαβ(x) =
N∑
I=1

ΦI,αβ(x)uI (4.2b)

where ΦI(x), ΦI,α(x) and ΦI,αβ(x) are iRBF shape function and its derivatives
described above.

For bending plate, the plastic dissipation function can be computed as

Dp(κ) =
∫

Ω
mTκdΩ (4.3)

where m = [mxx myy mxy] presents moments on the yield surface associated with
the plastic curvature rates κ, which relates to the transverse velocity via the stan-
dard relations κT = [κxx κyy 2κxy] = ∇2u, in which the differential operator ∇2 is
defined as

∇2 =
[
∂2

∂x2
∂2

∂y2 2 ∂2

∂x∂x

]
(4.4)

By means of numerical nodal integration, the plastic dissipation function can be
expressed as

Dp(κ) =
N∑
j=1

aj(m+
pxκ

+
x +m+

pyκ
+
y +m−pxκ

−
x +m−pyκ

−
y )j (4.5)

where aj is the area of nodal representative domain j, i.e., a Voronoi cell;
(
κ+, κ−

)
are the related curvatures;

(
m+
p ,m

−
p

)
present the positive and negative yield mo-

ments per unit length in x− and y−directions, which can be calculated as follows

mp = AsfY d

(
1− φ

2

)
(4.6)
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where As and fY denote the area and yield strength of reinforcement; dimension of
d is illustrated in Figure 4.1; and the reinforcement degree φ is given by

φ = AsfY
dfc

(4.7)

where fc is compressive strength of concrete.

b = 1m

AsfY

fc

zz

y x
yx

mp

a
d

h/2

h/2
h

Figure 4.1: Slab element subjected to pure bending in the reinforcement direction

For reinforced concrete slabs, the commonly used yield criterion is the Nielsen’s
one, which can be expressed by two rotated quadratic cones

bi + Qim ∈ K 3
r , i = 1, 2 (4.8)

where

Q1 =


−1 0 0
0 −1 0
0 0

√
2

 ; Q2 =


1 0 0
0 1 0
0 0

√
2

 (4.9)

and
bT1 =

[
m+
px,m

+
py, 0

]
; bT2 =

[
m−px,m

−
py, 0

]
(4.10)

Finally, the upper bound limit analysis of the reinforced concrete slabs can be
formulated in the form of a conic optimization problem as follows conic optimization
problem as follows
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λ+ = min
N∑
j=1

aj(m+
pxκ

+
x +m+

pyκ
+
y +m−pxκ

−
x +m−pyκ

−
y )j (4.11)

s.t



(κ+
x , κ

+
y , κ

+
xy)j ∈ K +(3)

r , ∀j ∈ {1, 2, . . . , N}

(κ−x , κ−y , κ−xy)j ∈ K −(3)
r , ∀j ∈ {1, 2, . . . , N}

N∑
i=1

ΦI,xx(x)(xj)uI = (κ−x − κ+
x )j, ∀j ∈ {1, 2, . . . , N}

N∑
i=1

ΦI,yy(x)(xj)uI = (κ−y − κ+
y )j, ∀j ∈ {1, 2, . . . , N}

N∑
i=1

ΦI,xy(x)(xj)uI =
√

2(κ+
xy + κ−xy)j, ∀j ∈ {1, 2, . . . , N}

Au = b

(4.12)

where A and b are obtained by imposing the unitary external work and the kine-
matic boundary conditions, respectively and given by

Aeq =



N∑
j=1

ajφ1(xj)
N∑
j=1

ajφ2(xj) . . .
N∑
j=1

ajφN (xj)

φ1(xb1) φ2(xb1) . . . φN (xb1)
. . . . . .

. . . . . .

φ1(xbd) φ2(xbd) . . . φN (xbd)
φ1,x(xb1) φ2,x(xb1) . . . φN,x(xb1)
. . . . . .

. . . . . .

φ1,x(xbrx) φ2,x(xbrx) . . . φN,x(xbrx)
φ1,y(xb1) φ2,y(xb1) . . . φN,y(xb1)
. . . . . .

. . . . . .

φ1,y(xbry) φ2,y(xbry) . . . φN,y(xbry)



(4.13)

and
beq =

[
1

d︷ ︸︸ ︷
0 . . . 0

rx︷ ︸︸ ︷
0 . . . 0

ry︷ ︸︸ ︷
0 . . . 0

]
(4.14)

where (d, rx, ry) are number of boundary nodes having velocity, x and y-rotation
conditions, respectively.

As above-presented, the rotations and curvatures are directly determined from
the approximated transverse velocity. As a result, there is only one variable at each
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node, and hence the size of the resultant optimization problem, (4.12) , is kept to be
minimum. Moreover, all equations in problem (4.12) are straightforwardly satisfied
at discretized nodes within the computational domain. Problem (4.12) consists of
N variables for nodal velocity and 3×N variables for each rotated cone. Therefore,
the total variables in problem (4.12) is Nvar = N + 2× 3×N = 7×N .

The numerical implementation of the upper bound limit approach is a part of
flow chart shown in Figure 1.1.

4.3 Numerical examples

This section investigates a number of benchmark problems, for which analytical
and/or numerical solutions are available for comparison. For all examples, input
data are: thickness t = 1; unit plastic moment of resistance mp = 1; and slabs
are subjected to the unit uniform pressure load q = 1. The solutions are obtained
using Mosek optimization solver version 6.0 on a 2.8 GHz Intel Core i5 PC running
Window 7.

4.3.1 Rectangular slabs

Rectangular slabs with either simply supported (SSSS) or clamped (CCCC), (·)
corresponds to left, bottom, right and top edges respectively, boundary conditions
on all edges are considered first. It is assumed that the slabs are isotropic with
positive and negative yield moments(m+

p = m−p = mp) in both directions. Due to
the symmetry, only the upper-right quarter of plate is modeled, as shown in Figure
4.2.

The influence of the shape parameter αs on the limit load factor of a simply
supported square slab is studied first. The relationship between the computed limit
load factors and the parameter αs, is illustrated in Figure 4.3. It can be seen that
for all nodal distribution solutions obtained when setting α = 2 are lower (better)
than those of smaller αs, αs = 0.00001 or αs = 1. Note that when αs is taken to be
larger than 2, a lower (i.e., improved) computed limit load factor may sometimes
be obtained, however the computational cost increases. Therefore, in order to com-
promise between accuracy and computational cost αs is taken as 2 for all problems
considered henceforth.
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Figure 4.2: Rectangular slab: geometry, loading, boundary conditions and nodal
discretization

Various ratios of b/a are investigated, and Table 4.1 summarizes computed nu-
merical solutions using a regular nodal distribution of 35×35 nodes, corresponding
to 8575 variables in the resultant optimization problem. Analytical solutions for a
fully simply supported boundary condition slab are given as

λ =



24√3 +
(
a

b

)2
− a

b

2 ×
mp

qab
, Ingerslev [218];

8
[
1 + a

b
+ b

a

]
× mp

qab
, Johansen [219].

(4.15)

Table 4.1: Rectangular slabs with various ratios b/a: limit load factors
b

a

Present method Reference [209] SSSS-Reference [218]
SSSS CCCC SSSS CCCC Johansen Ingerslev

1.0 24.00 44.83 24.18 43.61 24.00 24.00
1.5 25.62 50.00 25.92 47.20 25.33 25.45
2.0 28.48 56.13 28.45 52.50 28.00 28.28
2.5 31.86 63.46 32.00 59.62 31.20 31.61
3.0 35.53 71.30 35.82 66.50 34.67 35.18
3.5 39.48 81.76 39.07 72.48 38.29 38.89
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Figure 4.3: Simply supported square slab: normalized limit load factor λ+ versus
the parameter αs
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Figure 4.4: Limit load factors λ+ (mp/qab) of rectangular slabs (b/a = 2) with
different boundary conditions: CCCC (56.13), CCCF (48.53), CFCF (36.01), SSSS
(28.48), FCCC (21.61), FCFC (9.08)

Rectangular slabs with other boundary conditions including free (F), simply
supported (S) and clamped (C) edges are also considered. Limit load factors and
convergence analysis for the case when b/a = 2 are illustrated in Figure 4.4.

To illustrate the performance of the iRBF based limit state analysis procedure,
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(a) CCCC (b) CCCF (c) FCCC

(d) SSSS (e) CFCF (f) FCFC

Figure 4.5: Rectangular slabs (b = 2a) with various boundary conditions: plastic
dissipation distribution

the present solutions and associated computational aspects, including relative errors
and number of variables, for simply supported and clamped square plates (a = b =
L) are compared with those obtained using the CS-HCT [208] and EFG methods
[209], see Table 4.2. It can be observed that the proposed method can provide more
accurate solutions with less computational effort (in terms of number of variables)
than other selected approaches, particularly for simply supported slab. For simply
supported slab, a solution of 24.00mp/qL

2 is obtained by using the iRBF method
with 8575 variables, which is better than results of 24.07mp/qL

2 obtained by CS-
HCT method [208] using 136188 variables, and of 24.18mp/qL

2 presented in [209]
using 8575 variables in the EFG formulation.

Table 4.2: Results of simply supported and clamped square slabs

Author
Present method EFG [209] CS-HCT [208]
SSSS CCCC SSSS CCCC SSSS CCCC

λ+ 24.00 44.83 24.18 43.61 24.07 44.81
e (%) 0.00 4.62 0.75 1.80 0.29 4.57
t (s) 14 14 - 30 - 826
Nvar 8575 8575 8575 8575 136188 136188
e: relative errors; t: CPU-Time; Nvar: number of variables

In Table 4.3, the iRBF solutions are also compared with previously published up-
per and lower bounds using displacement discontinuous finite elements [64], equilib-
rium mesh-free method [93] and equilibrium finite elements [58, 207] . It is evident
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Table 4.3: Square slabs: limit load multipliers in comparison with other methods

Author
Simple supported Clamped
λ+ λ− λ+ λ−

Present method 24.00 - 44.83 -
Le et al. [208], CS-HCT 24.07 - 44.81 -
Le et al. [209], EFG 24.14 - 43.61 -
Bleyer et al. [64], FEM-T6b 24.00 - 44.03 -
Bleyer et al. [64], FEM-H3 24.43 - 43.45 -
Le et al. [93], FEM - 23.96 - 42.83
Krabbenhoft [58], FEM - - - 42.82
Maunder et al. [207], FEM - - - 42.00

that these solutions are, in general, in good agreement. Note that in approaches
proposed by others, there is at least 3 variables per node, and hence the size of
corresponding formulation may be larger than that of the present method. The
yield patterns in terms of plastic dissipation distribution for rectangular slabs with
different boundary conditions are also plotted in Figure 4.5.

4.3.2 Regular polygonal slabs

Next, regular polygonal slabs with n-sides (n = 3, 4, 5, 6,+∞) are examined.
Nodal distribution and computational domains of all slabs are shown in Figure 4.6.
For square and circular slabs, only the upper-right quarters are modeled, while for
triangular, pentagonal and hexagonal slabs the whole domains are discretized. All
slabs are assumed to be isotropic with equal magnitudes of hogging and sagging
yield momentsm+

p = m−p = mp in both directions. Let R denotes the radius of incir-
cle of regular polygons. Both simply supported and clamped boundary conditions
are investigated.

Computed limit load multipliers and associated dissipation distribution for polyg-
onal slabs are reported in Figure 4.7. Table 4.4 compares the present results for
clamped slabs with analytical solutions and recent selected upper bounds obtained
us- ing CS-HCT and EFG based numerical procedures. For all cases, the EFG
based approach can provide lower (better) upper bound solutions than the present
iRBF method. This may be explained by the fact that the plastic dissipation along
clamped boundaries can be accurately produced by the high-order shape func-
tions obtained by the moving least squares approximation technique, that uses
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(a) n = 3 (b) n = 4

(c) n = 5 (d) n = 6 (e) n = +∞

Figure 4.6: Nodal distribution and computational domains of polygonal slabs: (a)
triangle; (b) square; (c) pentagon; (d) hexagon; (e) circle

an isotropic quartic spline weight function. However, the advantages of the iRBF
method over the EFG approach are that the iRBF shape functions hold the Kro-
necker delta property, and hence there is no need of any special treatment when
enforcing boundary conditions as encountered in the EFG method; and that the
computation of iRBF shape functions is less expensive in terms of CPU time than
that of EFG’s ones, i.e., for a mesh of 15 × 15 nodes, the iRBF method takes
approximately 0.5s, compared with about 5.8s when using the EFG method.

Table 4.4: Clamped regular polygonal slabs: limit load factors in comparison with
other solutions (mp/qR

2)

Author
Geometry of slabs

Triangle Square Pentagon Hexagon Circle
Present method 10.42 11.21 12.13 12.86 12.40
Le et al. [208], CS-HCT 10.67 11.15 12.21 - 13.09
Le et al. [209], EFG 9.98 10.90 11.54 - 12.31
Fox [220], analytical method 9.61 10.71 11.19 11.44 -
Johansen [219], analytical method - - - - 12.00
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(a) λ+ = 10.42 (b) λ+ = 11.21 (c) λ+ = 12.13 (d) λ+ = 12.86 (e) λ+ = 12.40

(f) λ+ = 5.63 (g) λ+ = 6.00 (h) λ+ = 6.21 (i) λ+ = 6.36 (j) λ+ = 5.97

Figure 4.7: Plastic dissipation distribution and collapse load multipliers (mp/qR
2)

of polygonal slabs: (a, b, c, d, e)-clamped; (f, g, h, i, j)-simply supported

4.3.3 Arbitrary geometric slab with a rectangular hole

The last example comprises an arbitrary geometric slab with an eccentric rect-
angular cutout, as shown in Figure 4.8, which has been examined previously using
equilibrium finite elements [200], curvature smoothing HCT elements [208] and the
displacement mesh-free method [209]. The problem is solved using a nodal distri-
bution of 1151 nodes, corresponding to 8051 variables in the resultant optimization
problem.
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(a) Geometry, dimension and boundary condi-
tion

(b) Nodal discretization

Figure 4.8: Arbitrary shape slabs: geometry (all dimensions are in meter) and dis-
cretization
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For isotropic slab with equal positive and negative yield moments (m+
p = m−p =

mp), the collapse load factor obtained is 0.1421 ×mp, which is in good agreement
with results of 0.148×mp in [200], of 0.1420×mp in [208] and of 0.1424×mp in [209].
Table 4.5 summarizes limit load multipliers of slabs with various ratios of m+

p /m
−
p ,

illustrating the influence of negative yield moment on the bearing capacity of slabs.
The present results are competitive with those reported in [208, 209]. Moreover,
it is interesting to point out that, here, for all cases involving simply supported
boundary conditions the present iRBF method can result in lower (better) solutions
than the EFG approach. Orthotropic slab with the ratio of yield moments in x− and
y−directions mpx/mpy = 0.5 is also considered. The computed result of 0.086×mp

is in excellent agreement with a solution of 0.086 × mp reported in [208, 209]. In
general, the present method is more efficient than those of [208, 209].

Plastic dissipation distribution and collapse mechanism for the case of isotropic
reinforcement are also shown in Figure 4.9. It can be observed that the failure
mechanism obtained by present method is in good agreement compared with one
in [205] using DLO approach.

(a) Displacement contour (b) Dissipation distribution
17

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140071

...................................................
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Figure 8. Slab with hole: geometry (dimensions in metre) and DLO solution (120 nodal divisions). (Online version in colour.)

Table 4. Slab with hole: literature versus DLO solutions.

reference bound nodal divisionsa solutionλ

Jackson [21] upper — 0.137
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lower — 0.132
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Krabbenhøft et al. [10] lower (approx.) — 0.135b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DLO upper 120 0.13554

aNumber of divisions per 10 m slab length.
bCalculated by dividing the quoted pressure load (6.75) by the quoted plastic moment of resistance (50).

DLO load factor was found to be 0.13554, which is bracketed by the upper and lower bound
solutions reported by Jackson [21], as indicated in table 4. Also, the solution is 0.4% higher
than the approximate lower bound solution reported by Krabbenhøft et al. [10]. This example
demonstrates that the DLO procedure can be applied to problems with realistic geometries,
something that is essential for industrial application.

(e) Simplified solutions
It is evident from the preceding examples that many of the DLO solutions identified are rather
complex, and distinctly different to the ‘textbook’ yield-line solutions most practicing engineers
are familiar with (for reasons which will be briefly discussed in the next section). However, by
using the procedure described in §4b, simpler, more familiar looking, yield-line patterns can be
generated. Sample simplified solutions for each of the examples considered are shown in figure 9;
values for the simplification factor k were chosen on a case-by-case basis to provide the desired
level of simplification. Figure 10 shows how the value of k influences the yield-line pattern for
Regan and Yu’s indented slab example.

It is evident that simplified yield-line patterns can successfully be generated, and, although the
corresponding load factors are somewhat less accurate than calculated using the standard DLO

(c) Failure mechanism [205]

Figure 4.9: Arbitrary geometric slab with an eccentric rectangular cutout (m+
p =

m−p = mp): displacement contour and dissipation distribution at collapse state
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Table 4.5: Collapse load of an arbitrary shape slab (×m−p )
m+

p

m−
p

1 1
2

1
4

1
8

Present method (Nvar = 8057) 0.1421 0.1295 0.1217 0.1167
Le et al. [208], CS-HCT (Nvar = 38139) 0.1420 0.1298 0.1233 0.1217
Le et al. [209], EFG (Nvar = 8057) 0.1424 0.1299 0.1226 0.1181

4.4 Conclusions

A novel rotation-free mesh-free method based on integrated radial basis func-
tions has been developed for limit state analysis of reinforced concrete slabs. The
transverse velocity is approximated without using rotational degrees of freedom,
and therefore the total number of variables in the resultant optimization problem
is kept to a minimum, i.e., equal to the number of discretized nodes in the prob-
lem domain. The proposed formulation is tested by applying it to various Nielsen’s
reinforced concrete slabs of arbitrary geometries. It has been demonstrated that
the present method, consisting of high-order shape functions obtained by integrat-
ing radial basis functions, can provide accurate collapse load multipliers. Moreover,
the high-order and smooth iRBF approximation is capable of capturing yield pat-
terns of arbitrary geometric slabs. The present optimization strategy based on conic
programming enables solutions of practical sized reinforced concrete slabs to be ob-
tained rapidly. It should be noted that in the mesh-free based numerical procedures
for limit state analysis of structures nodes may be moved, discarded or introduced
conveniently. Hence the implementation of an h-adaptive scheme is facilitated, and
will be the subject of future research.
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Chapter 5

A stabilized iRBF mesh-free method for
quasi-lower bound shakedown analysis of

structures 1

5.1 Introduction

In chapters 3 and 4, the iRBF-based mesh-free method is extent to the limit
analysis of structures, where it is assumed that loading increases gradually until
the collapse appears. In fact, engineering structures are usually subjected to repeat,
cyclic or time-dependent loads. Under a repeated cycle of loading, the structures
may be fail due to some collapse modes, e.g. rotating plasticity, a general mode of
alternating plasticity (lower cycle fatigue) [32], incremental plasticity (ratcheting)
or instantaneous plasticity. Direct analysis, a perfect alternative scheme for step-
by-step method, has been successfully applied for this field. Limit analysis for the
case of proportional loading and shakedown analysis in case of variable repeated
loading, have been found to be more efficient [19, 73, 77, 221–223]. In direct shake-
down analysis, the load limits can be determined without a need of loading history,
and hence the method can be applied to a wide range of problems in engineering
practices.

The implementation of computational shakedown analysis generally involves two
main steps: (i) approximate the problem fields using a discretization method, and
(ii) solve the resulting optimization to obtain the solution. In the literature, various
numerical approaches have been developed for both kinematic and static shake-
down analysis, for instance, mesh-based methods [67, 80, 82, 224–226], boundary
element method [86, 87] and mesh-free approaches [90, 91]. When the variable fields

1based on P. L. H. Ho and C. V Le, “A stabilized iRBF mesh-free method for quasi-lower
bound shakedown analysis of structures,” Comput. Struct., vol. 228, p. 106157, 2020.
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are approximated and bound theorems is applied, shakedown analysis becomes an
optimization problem which can be solved using iterative algorithm [86, 90] or
primal-dual interior-point method [73, 80]. However, in treating large-scale opti-
mization problem, the second-order cone programming has been proved to be more
powerful [32, 77].

The objective of this study is to extend the iRBF mesh-free method to quasi-
static shakedown analysis of 2D and 3D structures. In the quasi-static formulation,
the stress field is decomposed into two parts involving a fictitious elastic stress and
a self-equilibrated residual stress. The fictitious elastic stresses are calculated using
the usual Galerkin procedure. The virtual strains are approximated by the (sta-
bilized) iRBF shape functions, and equilibrium equations for the self-equilibrated
residual stress field are enforced in a weak form. It is worth noting that the present
formulation is different from the one presented in chapter 3, where total stress
fields are approximated and a strong form of equilibrium equations are used. The
yield conditions for two and three dimensional problems are formulated as conic
constraints. All constrains of the resulting optimization problem are imposed at a
finite number of discretized nodes, instead of Gaussian points, and hence the size
of the obtained optimization problem is kept to a minimum. The combination of
iRBF mesh-free method and conic programming enables the shakedown solutions
to be obtained rapidly, and consequently the load domains consisting of a large
number of points can be approximated efficiently. The performance of proposed
procedure will be illustrated by investigating various benchmark problems in plane
stress, plane strain and three-dimensions conditions.

5.2 iRBF discretization for static shakedown formulation

Consider an elastic-perfectly plastic structure of volume V subjected to variable
repeated loads. Let σE denote the fictitious elastic stress belonging to a bounded
time-independent global loading domain P = {σE | σE(x, t) ∈ Px, x ∈ V, t ∈
[0, T ]}, where Px is the local loading domain at a point x ∈ V . The static/lower
bound shakedown theorem states that if there exits a residual stress ρ, which is
time-independent and self-equilibrium, so that the total stress, σ = σE + ρ, does
not violate the yield condition at any point in the structure for all possible load
combination. Let λ be the shakedown safety factor, the lower bound on the ac-
tual shakedown safety factor of a structure, λs, can be determined by solving the
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following optimization problem

λs = max
ρ∈R

{λ | ψ(λσE + ρ, σp) ≤ 0 , ∀σE ∈P} (5.1)

where R is the set of admissible bounded residual stress field, σp is the yield stress,
and ψ is the yield function of ductile materials.

In terms of numerical implementation, the fictitious residual stress field can be
approximated via a reflection of nodal values in the problem domain using the iRBF
method as follows

ρh(x) =
N∑
i=1

Φi(x)ρi (5.2)

where Φi(x) is the iRBF shape function; the residual stresses at nodes are denoted
by a vector consisting (ρxx, ρyy, ρxy) for 2D and (ρxx, ρyy, ρzz, ρxy, ρxz, ρyz) for
3D discretizations.

In the equilibrium shakedown analysis formulation, the residual stress fields is
required to be equilibrated at every point in the problem domain. This results
in difficulties in a numerical solution strategy due to the fact that equilibrium
equations are often accessed at integration points. A way out of such the difficulties
is to transform the strong form of the equilibrium equations into its weak form by
using the principle of virtual work as follows

∫
V
δεT (x)ρ(x)dV = 0 (5.3)

where δε(x) denotes any virtual strain which satisfies the kinematic boundary con-
ditions. The virtual strain field δε(x) can be approximated using the iRBF method
as

δε(x) = B(x)δd (5.4)

where δd denotes the nodal displacement vector and B(x) is the strain-displacement
matrices defined for 2D problems as

B(x) =


φ1,x 0 φ2,x 0 · · · φN,x 0

0 φ1,y 0 φ2,y · · · 0 φN,y

φ1,y φ1,x φ2,y φ2,x · · · φN,y φN,x

 (5.5)
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and for 3D problems as

B(x) =



φ1,x 0 0 φ2,x 0 0 · · · φN,x 0 0
0 φ1,y 0 0 φ2,y 0 · · · 0 φN,y 0
0 0 φ1,z 0 0 φ2,z · · · 0 0 φN,z

φ1,y φ1,x 0 φ2,y φ2,x 0 · · · φN,y φN,x 0
0 φ1,z φ1,y 0 φ2,z φ2,y · · · 0 φN,z φN,y

φ1,z 0 φ1,x φ2,z 0 φ2,x · · · φN,z 0 φN,x


(5.6)

With the use of the iRBF approximated virtual strain field, the weak form (5.3)
can be rewritten as

∫
V

[B(x)δd]Tρ(x)dV = δdT
∫
V

BT (x)ρ(x)dV = 0 (5.7)

Equation (5.7) must hold for all δd, hence ones can obtain

∫
V

BT (x)ρ(x)dV =
N∑
k=1

VkBT
k ρk = Ceqρ = 0 (5.8)

where Vk is the volume of a representative Voronoi domain of node k, Ceq is a
constant equilibrium matrix, in which the essential boundary conditions are taken
into account by eliminating the corresponding degrees of freedom of nodes on the
kinematic boundaries. Therefore, the number of rows of Ceq is reduced to (sdof −
NBC), where sdof denotes the number of total degrees of freedom of the system,
and NBC is the number of degrees of freedom of nodes on the kinematic boundaries.

In the next step, the mathematical algorithms will be extent to handle the op-
timization problem. Using the primal-dual interior-point algorithms, the von Mises
criterion will be employed and formulated for 2D problems as follows

ψ(σ) =
√
σ2
xx + σ2

yy − σxxσyy + 3σ2
xy − σy for plane stress (5.9a)

ψ(σ) =
√

1
4(σxx − σyy)2 + σ2

xy − σy for plane strain (5.9b)

and for 3D problems as

ψ(σ) = (σxx−σyy)2 + (σxx−σzz)2 + (σyy−σzz)2 + 6(σ2
xy +σ2

xz +σ2
yz)− 2σ2

p (5.10)
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Introducing auxiliary variables r defined by

r1 = σp; r2→4 = J1σ = J1(λσE + ρ) for plane stress (5.11a)
r1 = σp; r2→3 = J2σ = J2(λσE + ρ) for plane strain (5.11b)
r1 =

√
2σp; r2→7 = J3σ = J3(λσE + ρ) for 3D (5.11c)

where

J1 = 1
2


2 −1 0
0
√

3 0
0 0 2

√
3

 ; J2 = 1
2

1 −1 0
0 0 1

 (5.12)

and

J3 = 1√
2σ0



1
2 −1 1

2 0 0 0

−
√

3
2 0

√
3

2 0 0 0

0 0 0
√

3 0 0
0 0 0 0

√
3 0

0 0 0 0 0
√

3√
2

2

√
2

2

√
2

2 0 0 0



(5.13)

The von Mises failure criterion ψ(λσE + ρ) can be now rewritten in terms of
standard conic constraints as

L =
{
r ∈ R4 | r1 ≥ ‖r2→4‖L2 =

√
r2

2 + r2
3 + r2

4

}
for plane stress (5.14a)

L =
{
r ∈ R3 | r1 ≥ ‖r2→3‖L2 =

√
r2

2 + r2
3

}
for plane strain (5.14b)

L =
{
r ∈ R6 | r1 ≥ ‖r2→6‖L2 =

√
r2

2 + r2
3 + r2

4 + r2
5 + r2

6

}
for 3D (5.14c)

Finally, the equilibrium formulation of a direct analysis problem can be expressed
as follows

λs = max λ

s.t
 Ceqρ = 0

rkt ∈ Lkt, k = 1, 2, . . . , N ; t = 1, 2, . . . ,M
(5.15)

where rkt is the additional vector defined at the discretized nodes kth for the loading
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vertex tth,M = 2nL is the number of vertices of the convex polyhedral load domain,
in which nL is the number of independent loading processes. It is important to note
that the safety load multipliers λs obtained from problem (5.15) are quasi-lower-
bound on the actual solutions. This is because the fact that equilibrium equations
and yield condition in the present formulation are enforced and satisfied at a finite
number of nodes in the computational domain.

The whole numerical implementation of quasi-lower bound limit and shakedown
formulation for structural analysis is summarized in Figure 5.1.

Structure
(geometry, dimension, material,
boundary condition, loading)

Numerical
discretization

Total stress field
σ(x) = λσE(x) + ρ(x)

Quasi-lower bound
formulation

λs = max λ

s.t
{

Ceqρ = 0
rkt ∈ Lkt

Quasi-lower bound
load multiplier

Stress field Displacement
field

Residual stress
ρ(x)

Elastic stress
σE(x)

SOCP
optimization

Weak form
using principle
of virtual work

approximate elastic analysis

solve

Figure 5.1: Quasi-static shakedown analysis.
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5.3 Numerical examples

In this section, various examples in two-and three-dimensions are examined to
illustrate the performance of proposed method. The resulting optimization problems
are solved using the commercial software package Mosek on a 2.8 GHz Intel Core i7
PC running Window 10. The number of variables Nvar in the resulting optimization
problem is equal to 3×N +1+4×2nL for plane stress, 3×N +1+3×2nL for plane
strain and 6×N + 1 + 6× 2nL for 3D problems. For comparison purpose, numerical
solutions based on the radial point interpolation method (RPIM) are also reported.

5.3.1 Punch problem under proportional load

In order to study computational aspects of the present iRBF-based quasi-static
direct analysis procedure, the punch problem consisting of a semi-infinite rigid-
plastic von Mises medium under a punch load of 2τ0 (nL = 1) is considered. Note
that the problem has been investigated in [227] using both kinematic and static
formulation based on the iRBF mesh-free method. The problem is solved using
various nodal distribution in the computational domain of B = 5, H = 2 and a = 1
as shown in Figure 5.3.

2τ₀

H

B

aa

B

Figure 5.2: Prandtl’s punch problem

Figure 5.4 compares the present computed solutions with results using the iRBF
static method presented in [227]. It can be observed that present solutions con-
verge from above while results in [227] approach to the exact collapse load factor
from below. Both methods are based on equilibrium formulation, but convergence
behaviour is different. This may be explained by the fact that in the present formu-
lation the virtual displacement fields are approximated and equilibrium equations
are satisfied in a weak form, whereas in [227] stress fields are approximated and
the strong form of equilibrium conditions are enforced using collocation technique.
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H

B

2τ₀

a

Figure 5.3: Prandtl’s punch problem: computational model
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(b) Relative errors

Figure 5.4: The punch problem: computational analysis

It is also interesting to point out that both methods results in the same number of
variables in its optimization problem when using the same nodal distribution, but
the present method can provide more accurate solutions (smaller relative errors).

Table 5.1: Computational results of iRBF and RPIM methods

Approach
Collapse load factor Exact

λs e (%) t (s) Nvar solution
iRBF, quasi lower bound 5.186 0.86 79.34 12355

5.142RPIM, quasi lower bound 5.208 1.29 122.72 12355
RPIM, lower bound in [227] 5.087 1.07 214.41 12355

t is the CPU optimization time, e is the relative errors in collapse load factor

Table 5.1 reports computed collapse load factors, relative errors, computational
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Figure 5.5: The punch problem: iRBF versus RPIM

(a) Elastic stress field

(b) Residual stress field (c) Limit stress field

Figure 5.6: Prandtl’s punch problem: distribution of elastic, residual and limit stress
fields

CPU time using both iRBF and RPIM based numerical procedures with a nodal dis-
tribution of 2059 nodes (using 2D model). Convergence analysis of the two methods
is also illustrated in Figure 5.5. It can be observed that for all nodal distribution
the iRBF method results in more accurate collapse load factors than the RPIM
method, while the computational CPU time taken to solve the iRBF optimization
problem is smaller that that of the RPIM method. In short, the present method
is more advantaged than the RPIM approach and the iRBF based static method
presented in [227] in terms of computational efficiency and solution accuracy. The
distribution of elastic, residual stresses and stress field at limit state is also shown
in Figure 5.6.
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5.3.2 Thin plate with a central hole subjected to variable tension
loads

Next, consider a square plate with a circular hole at its center, see Figure 5.7,
and subjected to a biaxial tension loads varying independently as

0 ≤ p1 ≤ p01 , 0 ≤ p2 ≤ p02 (5.16)

L

L/5

L p₁

p₂

(a) Geometry and loading

p₁

p₂

R

L/2

L
/2

(b) Computational model

Figure 5.7: Square plate with a central circular hole: geometry (thickness t = 0.4R),
loading and computational domain

The problem has been extensively investigated in the literature using different
numerical procedures, for example static formulation [82, 90, 193, 197, 221, 224, 225,
228, 229], kinematic formulation [68, 78, 80, 96, 191], mixed formulation [226]. The
plate is solved employing only upper-right quarter, see 5.7, and using the following
data: E = 2.1 × 105 MPa, ν = 0.3 and σp = 200 MPa. The two- and three-
dimension nodal discretization and associated Voronoi diagrams are respectively
plotted in Figures 5.8(a) and 5.8(b).

Tables 5.2 and 5.3 report computed limit and shakedown load factors using the
proposed numerical procedure, together with those obtained using different methods
in the literature [80, 86, 87, 90, 96, 226], for three different loading cases. In general,
good agreement of these solutions is observed. However, the present method posses
more advantages in terms of discretization technique and optimization algorithm,
compared with previously proposed approaches. The iRBF method results in high-
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(a) 2D model (b) 3D model

Figure 5.8: Square plate with a central circular hole: the nodal distribution and
Voronoi diagrams
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(b) Limit load domains for various thickness

Figure 5.9: Plate with hole: loading domain

order shape functions than finite elements [226], smoothed finite elements [80], and
boundary elements [86, 87], and hence more accurate solutions can be obtained
when using the same mesh. Note that in [96], the radial point interpolation mesh-
free method (RPIM) is used in the kinematic formulation, but as shown in the
first example the method does not perform as well as the iRBF method. In [90],
the EFG mesh-free method is used in the framework of static theorem, providing
accurate solutions. However, the EFG shape functions do not hold Kronecker’s
delta properties, and hence attention must be paid to enforce boundary conditions.
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Figure 5.10: Plate with hole: load domains in comparison with other numerical
methods

This is not the case for the iRBF method, in which boundary conditions can be
enforced in a way similar to ones in the finite element method. Regarding the
optimization algorithm, the second-order cone programming used in the present
numerical procedure is able to solve large-scale problems with up to thousands
of variables in a couple of minutes, enabling the efficient computation of a large
number of points to describe a load domain. Stress fields for various load cases are
plotted in Figures 5.11–5.13. Limit load domains for various plate thickness are also
shown in Figure 5.9(b).

Graphics of proportional plastic limit curve and shakedown limit curve for all
range of (5.16) are plotted in the plane of load coordinates p1/σp, p2/σp as in Figure
5.9(a). Figure 5.10 shows the limit and shakedown load domains using the iRBF
based static method and other numerical approaches. It is evident that iRBF solu-
tions are in good agreement with those obtained using static theorem [90, 193, 221]
and kinematic formulation [166, 228].
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Table 5.2: Plate with hole: comparison of limit load multipliers

Authors
Loading cases

p1 = p2 p1 = 2p2 p2 = 0
Present iRBF 2D, quasi-static 0.871 0.902 0.8001
Present iRBF 3D, quasi-static 0.858 0.909 0.8002

Ho et al. [82], CS-FEM, quasi-static 0.896 0.911 0.8007

Gross-Weege[221], FEM, static 0.882 0.891 0.792
Liu et al. [86], EFG, static 0.903 0.915 0.795
Chen et al. [90], EFG, static 0.874 0.899 0.798
Tin-Loi and Ngo [197], FEM, static 0.895 0.912 0.803

Vicente da Silva and Antao [191], FEM, kinematic 0.899 0.915 0.807
Le et al. [78], CS-FEM, kinematic 0.895 0.911 0.801

Zouain et al. [226], FEM, mixed 0.894 0.911 0.903

Gaydon and McCrum [230], analytical solution - - 0.800

Table 5.3: Plate with hole: comparison of shakedown load multipliers

Authors
Loading cases

p1 = p2 p1 = 2p2 p2 = 0
Present iRBF 2D, quasi-static 0.478 0.551 0.650
Present iRBF 3D, quasi-static 0.474 0.546 0.645

Ho et al. [82], quasi-static 0.449 0.536 0.617

Gross-Weege [221], static 0.446 0.524 0.614
Genna [225], static 0.478 0.566 0.653
Liu et al. [87], static 0.477 0.549 0.647

Carvelli et al. [68], kinematic 0.518 0.607 0.696
Corradi and Zavelani [228], kinematic 0.504 0.579 0.654
Krabbenhoft [229], kinematic 0.430 0.499 0.595

Zouain et al. [226], mixed 0.429 0.500 0.594
Garcea et al. [231], mixed 0.438 0.508 0.604

Tran et al. [80], dual algorithms 0.444 0.514 0.610
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(a) Elastic stress field (b) Residual stress field (c) Limit stress field

Figure 5.11: Plate with hole: stress fields in case of [p1, p2] = [1, 0]

(a) Elastic stress field (b) Residual stress field (c) Limit stress field

Figure 5.12: Plate with hole: stress fields in case of [p1, p2] = [1, 0.5]

(a) Elastic stress field (b) Residual stress field (c) Limit stress field

Figure 5.13: Plate with hole: stress fields in case of [p1, p2] = [1, 1]

5.3.3 Grooved plate subjected to tension and in-plane bending loads

A grooved plate subjected to in-plane tension load pN and bending load pM is
also considered. The variable loads are defined by

0 ≤ pN ≤ σp; 0 ≤ pM ≤ σp (5.17)

Geometry, loading, boundary conditions and computational nodal distribution
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are shown in Figure 5.15. Geometry and material properties are given as: R = 250
mm, L = 4R, E = 2.1× 105 MPa, ν = 0.3, σp = 116.2 MPa.
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p 
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(a) Computational model
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(b) Limit and shakedown load domains

Figure 5.14: Grooved square plate subjected to tension and in-plane bending loads

(a) Nodal mesh 2D (b) Nodal mesh 3D (t = 0.4R)

Figure 5.15: Grooved square plate: computational nodal distribution

Limit and shakedown interaction diagram is illustrated in the plane of load co-
ordinates pN/σp, pM/σp as in Figure 5.14(b). Table 5.4 reports computed limit and
shakedown load multipliers for two loading cases: (i) pure tension (pN 6= 0, pM = 0);
(ii) both tension and bending (pN 6= 0, pM 6= 0). It is evident that the iRBF solu-
tions agree well with published results using different discretization methods. Stress
fields for various load cases are plotted in Figures 5.16 and 5.17.
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Table 5.4: Grooved plate: present solutions in comparison with other results

Authors
Limit load factor Shakedown load factor
pN 6= 0 pN 6= 0 0 ≤ pN ≤ σp

pM = 0 pM 6= 0 0 ≤ pM ≤ σp

Present iRBF 2D 0.524 0.25832 0.22024
Present iRBF 3D 0.571 0.26418 0.22065

Ho et al. [82], CS-FEM 0.557 0.29394 0.24807

Tran et al. [80], ES-FEM 0.562 0.27811 0.23603
Nguyen-Xuan et al. [81], ES-FEM 0.559 0.29660 0.22477
Tran [232], ES-FEM 0.572 0.30498 0.23603
Vu [233], FEM 0.557 - 0.23494

Prager and Hodge [234], FEM 0.500 - -
Casciaro [235], FEM 0.568 - -

Yan [236], numerical 0.558 - -
Yan [236], analytical 0.500 - 0.577 - -

(a) Elastic stress field (b) Residual stress field (c) Limit stress field

Figure 5.16: Grooved plate: stress fields in case of [pN , pM ] = [σp, 0]

(a) Elastic stress field (b) Residual stress field (c) Limit stress field

Figure 5.17: Grooved plate: stress fields in case of [pN , pM ] = [σp, σp]
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5.3.4 A symmetric continuous beam

This example deals with a symmetric continuous beam subjected to two indepen-
dently variable loads p1 ∈ [1.2, 2] and p2 ∈ [0, 1], as presented in Figure 5.18(a).
The material properties are assumed as: E = 1.8 × 105 MPa, ν = 0.3, σp = 100
MPa. Tables 5.5 and 5.6 compares the iRBF results with published solutions using
finite elements [231], cell-based smoothed finite elements [82], node-based strain
smoothing method [81] and the EFG mesh-free method [90].

10 80 20 40
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R10R10 R10

p 
1

p 
2

10

(a) Computational model

(b) Nodal mesh & Voronoi 2D

(c) Nodal mesh & Voronoi 3D

Figure 5.18: Symmetric continuous beam subjected to two independent load

Table 5.5: Symmetric continuous beam: limit load factors

Authors
Loading cases

p1 = 2.0 p1 = 0.0 p1 = 1.2 p1 = 2.0
p2 = 0.0 p2 = 1.0 p2 = 1.0 p2 = 1.0

Present iRBF 2D 3.225 8.836 5.530 3.309
Present iRBF 3D 3.337 8.671 5.472 3.282
Ho et al. [82], CS-FEM 3.301 8.748 5.504 3.302
Garcea et al. [231], FEM 3.280 8.718 5.467 3.280
Nguyen-Xuan et al. [81], ES-FEM 3.297 8.722 5.493 3.296
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Table 5.6: Symmetric continuous beam: shakedown load factors

Authors
Loading cases

1.2 ≤ p1 ≤ 2 0 ≤ p1 ≤ 2 0 ≤ p1 ≤ 2
0 ≤ p2 ≤ 1 0.6 ≤ p2 ≤ 1 0 ≤ p2 ≤ 1

Present iRBF 2D 3.217 2.333 2.308
Present iRBF 3D 3.228 2.357 2.276
Ho et al. [82], CS-FEM 3.362 2.228 2.205
Chen et al. [90], EFG 3.297 2.174 2.152
Garcea et al. [231], FEM 3.244 - -
Nguyen-Xuan et al. [81], ES-FEM 3.259 2.036 2.016

(a) Elastic stress field

(b) Residual stress field

(c) Limit stress field

Figure 5.19: Symmetric continuous beam: stress fields in case of [p1, p2] = [2, 0]

(a) Elastic stress field

(b) Residual stress field

(c) Limit stress field

Figure 5.20: Symmetric continuous beam: stress fields in case of [p1, p2] = [0, 1]
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(a) Elastic stress field

(b) Residual stress field

(c) Limit stress field

Figure 5.21: Symmetric continuous beam: stress fields in case of [p1, p2] = [1.2, 1]

(a) Elastic stress field

(b) Residual stress field

(c) Limit stress field

Figure 5.22: Symmetric continuous beam: stress fields in case of [p1, p2] = [2, 1]
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Figure 5.23: Continuous beam: iRBF load domains compared with other methods

100



Chapter 5. A stabilized iRBF method for quasi-lower bound shakedown analysis of structures

The approximated limit and shakedown load domains for all load range pN ∈
[−1, 1] and pM ∈ [−1, 1] are compared with those using smoothed finite elements
[82] in Figure 5.23. Stress fields for various load cases are also plotted in Figures
5.19 – 5.22.

5.3.5 A simple frame with different boundary conditions
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(b) Model B

Figure 5.24: A simple frame: geometry, loading, boundary conditions

(a) Nodal discretization 2D (b) Nodal discretization 3D

Figure 5.25: A simple frame: nodal mesh

The last example is the simple frames with different boundary conditions, see
Figure 5.24 (all dimensions in cm). The problem are investigated in [82, 231] under
plane stress condition. Data for analysis is given as: E = 2 × 105 MPa, ν = 0.3,
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Table 5.7: A simple frame (model A): limit and shakedown load multipliers

Authors
Limit analysis Shakedown analysis

p1 = 0.4 p1 = 1.0 p1 = 1.0 0.4 ≤ p1 ≤ 1.0
p2 = 3.0 p2 = 1.2 p2 = 3.0 1.2 ≤ p2 ≤ 3.0

Present iRBF 2D 3.153 2.979 2.728 2.649
Present iRBF 3D 3.261 3.073 2.818 2.676

Ho et al. [82], CS-FEM 2.981 2.820 2.634 2.452
Garcea et al. [231], FEM 2.831 2.975 2.645 2.473

Table 5.8: A simple frame (model B): limit and shakedown load multipliers

Authors
Limit analysis Shakedown analysis

p1 = 0.4 p1 = 1.0 p1 = 1.0 0.4 ≤ p1 ≤ 1.0
p2 = 3.0 p2 = 1.2 p2 = 3.0 1.2 ≤ p2 ≤ 3.0

Present iRBF 2D 4.152 8.095 3.874 3.964
Present iRBF 3D 4.209 8.077 4.150 4.172

Ho et al. [82], CS-FEM 4.186 7.810 3.931 3.817
Garcea et al. [231], FEM 4.207 7.804 3.949 3.925

(a) Elastic stress field (b) Residual stress field (c) Limit stress field

Figure 5.26: Simple frame (model A): stress fields in case of [p1, p2] = [3, 0.4]

(a) Elastic stress field (b) Residual stress field (c) Limit stress field

Figure 5.27: Simple frame (model A): stress fields in case of [p1, p2] = [1.2, 1]
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(a) Elastic stress field (b) Residual stress field (c) Limit stress field

Figure 5.28: Simple frame (model A): stress fields in case of [p1, p2] = [3, 1]

(a) Elastic stress field (b) Residual stress field (c) Limit stress field

Figure 5.29: Simple frame (model B): stress fields in case of [p1, p2] = [3, 0.4]

(a) Elastic stress field (b) Residual stress field (c) Limit stress field

Figure 5.30: Simple frame (model B): stress fields in case of [p1, p2] = [1.2, 1]

(a) Elastic stress field (b) Residual stress field (c) Limit stress field

Figure 5.31: Simple frame (model B): stress fields in case of [p1, p2] = [3, 1]
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Figure 5.32: Simple frame: iRBF load domains compared with other method

σp = 10 MPa and the thick of frame t = 10 cm. The frames are subjected to biaxial
load with the loading domain defined as

0.4 ≤ p1 ≤ 1; 1.2 ≤ p2 ≤ 3 (5.18)

Numerical solutions obtained using the present iRBF-based equilibrium formu-
lation are reported in Table 5.7 and 5.8. The approximated limit and shakedown
load domains for different models are compared with those using smoothed finite
elements [82] in Figure 5.32, showing excellent agreement. Stress fields for various
load cases are also plotted in Figures 5.26 – 5.31.

5.4 Conclusions

A quasi-static approach based on integrated radial basis function mesh-free
method and conic programming is proposed for direct analysis of structures. In-
stead of approximating stress fields, in the present formulation the virtual displace-
ment fields are approximated by stabilized iRBF shape functions, and equilibrium
condition for residual stress are satisfied in its weak form by using the virtual work
principle. With the use of stabilized iRBF shape functions, equilibrium equations
and yield conditions are enforced at discretized nodes, keeping the size of the re-
sulting optimization problem to be minimum. Numerical examples show that the
present requires less optimization CPU time comparing with other shakedown al-
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gorithms in the literature, and has a faster convergence behavior in comparison
with the RPIM approach. The proposed approach is capable of providing solutions
rapidly, and hence load domains of 2D and 3D structures can be approximated ef-
ficiently. Moreover, the present method is able to capture stress fields at limit state
for various problems.
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Chapter 6

Kinematic yield design computational
homogenization of micro-structures using the

stabilized iRBF mesh-free method 1

6.1 Introduction

The applications of iRBF-based meshless method for direct analysis of different
structures subjected to various loading conditions have been presented in chap-
ters 3, 4 and 5. In current chapter, the stabilized iRBF formulation previously
developed in chapter 5 will be employed for limit analysis of microstructures.

As the increasing use of composite and heterogeneous materials in practical en-
gineering structures, the estimation of their effective properties plays a vital role
in safety assessment as well as structural design. The elastic-plastic incremental
method can be employed to predict the ultimate load and collapse mechanism of
structures. However, direct method, e.g., limit analysis shows more effectively, i.e.
the critical status of structures can be determined without any knowledge of whole
loading path history [9, 237]. The first theoretical framework of limit analysis com-
bined with homogenization technique for computation of heterogeneous microstruc-
tures was introduced in [115–117]. The numerical formulations using various math-
ematical solvers were developed then, for instance finite element method and linear
algorithms [118], static direct methods and interior point algorithms [25, 119, 120] or
kinematic formulations in combination with nonlinear programming [121–125]. Re-
cently, with the use of finite element method and second order cone programming, a
numerical procedure based on the combination of limit analysis and homogenization

1based on P. L. H. Ho, C. V. Le, and Phuong H. Nguyen. “Kinematic yield design computa-
tional homogenization of micro-structures using the stabilized iRBF mesh-free method,” Applied
Mathematical Modelling, submitted on Feb 2020.
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theory for periodic materials was proposed in [126].

This study aim to develop a novel computational homogenization approach for
upper bound limit analysis of microstructures using iRBF meshless method. The
stability conforming nodal integration (SCNI) technique proposed in [166] is uti-
lized to improve the performance of proposed approach. In addition, the plastic
dissipation will be transformed into the form of a sum of norms and the resulting
optimization are then formulated as conic one. The benchmark numerical examples
will be considered and the good agreement in comparison to previous procedures
proves the performance of present method.

6.2 Limit analysis based on homogenization theory

Consider a heterogeneous representative volume element Ω ∈ R2 at every mate-
rial point x in the the heterogeneous macroscopic-continuum V ∈ R2. The micro-
structure is subjected to the body force f , the surface load t on the static boundary
Γt and fixed by the displacement field u on the kinematic boundary Γu. Assuming
that all constitutions of ductile composite are rigid-perfectly plastic and the strain
of constitutions obey the normality rule. The kinematic approach in framework of
limit analysis for computation homogenization described in [121–125, 183] will be
taken into account in this study.

It is important to note that most of yield criterion can be expressed in the
following form

ψ(σ) =
√
σTPσ − 1 (6.1)

where P is the coefficient matrix consisting strength properties of materials. For
orthotropic materials, Hill’s criterion is often used; and P for plane stress problem
is given by

P =


κzx + κxy −κxy 0
−κxy κxy + κyz 0

0 0 3ηxy

 (6.2)
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where the constants of material features can be expressed by

κzx = 1
2

[
1
σ2
pz

+ 1
σ2
px

− 1
σ2
py

]
; κxy = 1

2

[
1
σ2
px

+ 1
σ2
py

− 1
σ2
pz

]
(6.3a)

κyz = 1
2

[
1
σ2
py

+ 1
σ2
pz

− 1
σ2
px

]
; ηxy = 1

3τ 2
pxy

(6.3b)

with (σpx, σpy, σpz) are the uniaxial yield stresses related to three orthotropic di-
mensions (x, y, z); and τxy is the shear yield stress of materials.

For isotropic materials, the so-called von Mises criterion, a special case of Hill’s
criterion when σpx = σpy = σpz = σp and τpxy = σp√

3
, is frequently applied; and

matrix P for plane stress problem is given by

P = 1
σp


1 −1/2 0
−1/2 1 0

0 0 3

 (6.4)

In framework of limit analysis, the strain rates are assumed to obey the normality
rule; and therefore, the power of dissipation can be formulated in term of strain rates
as

D(ε) =
∫

Ω

√
εTΘεdΩ =

∫
Ω

√
(E + ε̃)TΘ(E + ε̃)dΩ (6.5)

where Θ is the inversion matrix of P.

Omitting the body force f and applying the principle of microscopic virtual work
(2.58), the normalization condition of external power can be rewritten as

F (u) =
∫

Γt

tTudΓ = ΣTE = 1 (6.6)

where ΣT and E are the overall stress and strain.

Now, the kinematic limit formulation of computational homogenization analysis
for a periodic micro-structure can be expressed as

λ+ = min
∫

Ω

√
(E + ε̃)TΘ(E + ε̃)dΩ (6.7a)

s.t
 ΣTE = 1

ũ periodic on Γu
(6.7b)
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The upper-bound of macroscopic limit strenth λ+Σ can be determined by solving
the nonlinear problem (6.7). The main difference of (6.7) in comparison with the
formulation of kinematic limit analysis for structure is in the periodic boundary
condition. Furthermore, it should be noted that present study only considers the
continuous velocity fields; and if the velocity fields are assumed to be discontinuous,
the dissipated power generated by discontinuities must be taken into account.

6.3 Discrete formulation using iRBF method

Following the homogenization theory, all variables related to the microscopic
structures are split to two parts: mean fields averaged over RVE and fluctuation
fields. In the kinematic formulation, the local microscopic fluctuation strain ε̃(x)
at point x can be calculated via the derivative of the fluctuation displacement ũ(x)
approximated using iRBF method as

ũh(x) =
N∑
i=1

Φi(x)ũi = Nd (6.8a)

ε̃(x) =
N∑
i=1

Φ̃i,α(x)ũi = Bd (6.8b)

where N is number of nodes scattered within problem domain; N denotes the iRBF
shape function; B is the strain-displacement matrix consisting the smoothed version
of shape function derivatives; and d is the nodal fluctuation displacement vector.

With the use of SCNI technique for the numerical integration, the plastic dis-
sipation well-known as the objective function of the optimization problems can be
expressed as

Dp(ε) =
N∑
i=1

σpAi
√

(E + Bid)TΘ(E + Bid) (6.9)

where σp is the yield stress of material, Ai is the area of the ith nodal representative
domain created using Voronoi diagrams.

In this study, the optimization problem will be formulated in form of second
order cone programming (SOCP) ensuring it can be solved using the highly effi-
cient solves. Hence, a form of sum of norms can be used to calculate the internal
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dissipation power as

Dp(ε) =
N∑
i=1

σpAi‖ρi‖ (6.10)

where ‖.‖ denotes the Euclidean norm and ρ is the vector of additional variables
defined by

ρi = QT (E + Bid) (6.11)

with Q denotes the Cholesky factor of Θ.

Next, the periodic feature of the fluctuation displacement for nodes on the bound-
ary of RVE needs to be enforced. Denoting Γ+ and Γ− for the positive and negative
boundaries such that Γ+ ∪ Γ− = Γ and Γ+ ∩ Γ− = ∅, the periodic condition for
every pair of points {x+,x−} on two opposite boundaries can be expressed as

ũ(x+)− ũ(x−) = 0 (6.12)

Assembling to the global matrix, equation (6.12) can be rewritten as

Cd = 0 (6.13)

Finally, by introducing the auxiliary variables (t1, t2, . . . , tN ), the optimization
problem can be formulated in form of conic programming as follows

λ+ = min
N∑
i=1

σpAi‖ρi‖ (6.14a)

s.t


ΣTE = 1
Cd = 0
‖ρi‖ ≤ ti, i = 1, 2, . . . , N

(6.14b)

The numerical implementation of the proposed approach is shown in Figure 6.1.

6.4 Numerical examples

In this section, various benchmark problems of computational homogenization
for limit analysis, in which the numerical solutions are available, will be investigated
to illustrate the performance of proposed method. A square RVE of a× a = 1× 1
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Representative
volume element (RVE)

(geometry, dimension, material,
boundary condition, loading)

Numerical
discretization

Mean part Fluctuation
part

Overall stress
and strain

(Σ,E)

Fluctuation
components

(ũ, ε̃, σ̃)Local fields

u(x) = E.X + ũ(x)
ε(x) = E + ε̃(x)
σ(x) = Σ + σ̃(x)

Kinematic formulation

λ+ = min
∫

Ω

√
(E + ε̃)TΘ(E + ε̃)dΩ

s.t
{

ΣTE = 1
ũ periodic on Γu

SOCP
optimization

Upper bound limit
load multiplier

macro-properties approximate

solve

Figure 6.1: Kinematic limit analysis of materials.

mm, and the shape parameters (αs = 0.00001, βs = 3) are used for all examples.
The plane stress model is assumed and number of variables Nvar in the problem
is equal to 6 × N + 3. The resultant optimization problems are solved using the
commercial software package Mosek on a 2.8 GHz Intel Core i7 PC running Window
10.
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6.4.1 Perforated materials

Estimating load-bearing capacity of perforated materials treated as a special
composite plays an important role in engineering structural design. In this example,
two perforated material models including a rectangular and a circle hole at center
are considered. The RVE is subjected to an orthogonal macroscopic stress (Σ11,Σ22)
in plane as shown in Figure 6.2, where θ is the angle between the principle stress
and x-axis. The matrix materials and yield stresses of rectangular and circular hole
RVEs are summarized in Table 6.1, and the behavior of both material models is
assumed to obey the von Mises yield criterion. Figure 6.3 illustrates the scheme of
nodal discretization using Voronoi diagram. The problems have been investigated
using kinematic formulation in [121, 122, 126] and quasi-static formulation in [120].

L1

L
2

x1

x2

θ

Ʃ11

Ʃ22

(a) Rectangular hole RVE

x1

x2

θ

Ʃ11

Ʃ22

R

(b) Circular hole RVE

Figure 6.2: RVEs of perforated materials: geometry, loading and dimension

Table 6.1: Perforated materials: the given data
Material models Matrix material Yield stress σp
RVE with rectangular hole Aluminium (Al) 137 MPa
RVE with circular hole Mild steel (St3s) 273 MPa

In case of rectangular hole RVE, the problem is considered with different sizes of
hole: (L1×L2 = 0.1× 0.5 mm) and (L1×L2 = 0.1× 0.7 mm). Table 6.2 shows the
numerical solutions using iRBF procedure in comparison with those in [122, 126].
From the table, it can be observed that present method provides the highly-accurate
solution with low computational cost. Number of variables in present formulation is
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less than those used in [126], while the numerical result is approximate. Moreover,
taking advantage of the cone-based algorithm, present resultant optimization prob-
lem can be solved rapidly, the CPU-time taken in whole solving process is much
lower than those in [122] using iterative algorithm. The good agreement of present
solutions compared with previous results reported in [122, 126] using numerical as
well as experimental procedures is expressed one more time in Figure 6.4 where the
macroscopic uniaxial strength Σ11 for the case of loading angle θ = 0o correspond-
ing to two different sizes of rectangular hole are plotted. In addition, it can be seen
from both sub-figures that the upper-bound solutions obtained using present iRBF
approach are slightly lower (better) than available those in other studies.

(a) Rectangular hole RVE (L1 × L2 =
0.1× 0.5 mm)

(b) Circular hole RVE (R = 0.25× a)

Figure 6.3: RVEs of perforated materials: nodal discretization using Voronoi cells

Table 6.2: Rectangular hole RVE (L1 × L2 = 0.1× 0.5 mm, θ = 0o)
Author and approach Σ11/σp sdof CPU-Time (s)

Present study, iRBF 0.5591 5246 10

Li et al. [122], FEM 0.5600 1920 95

Le et al. [126], FEM 0.5561 8140 6

sdof denotes the total system degrees of freedom

Next, the effect of microscopic hole on the overall strength of perforated materials
is investigated. The RVE with circular hole is considered with various variable
dimensions of perforation and loading angles. The uniaxial macroscopic strengths
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Σ11 and the limit strength domains in plane (x1, x2) are plotted in Figures 6.5
and 6.6, respectively. Obviously, from Figure 6.6, it is reasonable that the effective
macroscopic strength decreases when increasing ratio R/a. Again, present solutions
well agree with available those in [121, 126], see Figure 6.5.
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(a) L1 × L2 = 0.1× 0.5 mm
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(b) L1 × L2 = 0.1× 0.7 mm

Figure 6.4: Rectangular hole RVE: limit uniaxial strength Σ11 in comparison with
other procedures
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Figure 6.5: Circular hole RVE: limit uniaxial strength Σ11 in comparison with other
procedures
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Figure 6.6: Circular hole RVE: limit macroscopic strength domain with different
values of fraction R/a and loading angle θ
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Figure 6.7: Perforated materials: macroscopic strength domain at limit state
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(a) θ = 0o (b) θ = 45o (c) θ = 90o

Figure 6.8: Rectangular hole RVE (L1 × L2 = 0.1 × 0.5 mm): the distribution of
plastic dissipation

(a) 3D view (b) Σ11 − Σ22 view

(c) Σ11 − Σ12 view (d) Σ22 − Σ12 view

Figure 6.9: Rectangular hole RVE: macroscopic strength domain under three-
dimensions loads (Σ11,Σ12,Σ22)

In addition, the approximate macroscopic strength domain of perforated mate-
rials with rectangular hole (L1×L2 = 0.1× 0.7 mm) and circle hole (R = 0.25× a)
for angles of θ = 0o and θ = 45o are illustrated in Figure 6.7. The strength in
Σ22 direction is greater than that in Σ11 direction in case of rectangular hole RVE,
whereas those are equivalent in case of circular hole RVE. Figures 6.9 and 6.11 plot
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the macroscopic strength domain in limit state of both perforated models under
three-dimensions of applied loading (Σ11,Σ22,Σ12). The plastic dissipation distri-
butions representing the failure mechanism of RVEs are also presented in Figures
6.8 and 6.10.

(a) θ = 0o (b) θ = 45o (c) θ = 90o

Figure 6.10: Circular hole RVE (R = 0.25×a): the distribution of plastic dissipation

(a) 3D view (b) Σ11 − Σ22 view

(c) Σ11 − Σ12 view (d) Σ22 − Σ12 view

Figure 6.11: Circular hole RVE: macroscopic strength domain under three-
dimensions loads (Σ11,Σ12,Σ22)

117



Chapter 6. Kinematic yield design computational homogenization using the stabilized iRBF method

6.4.2 Metal with cavities
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Figure 6.12: Metal sheet with cavities: geometry and loading

(a) Nodal discretization
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(b) Limit strength domain of macro-
scopic load: iRBF versus FEM [126]

Figure 6.13: Metal with cavities: nodal discretization and macroscopic strength
domain

This example examines a perforated metal sheet with 4 × 4 holes regularly ar-
ranged in plane (x1, x2) as seen in Figure 6.12. The sheet of metal has dimension
a × a, the radius of holes and the distances are chosen such that L/a = 0.2 and
R/a = 0.05. The square pattern is subjected to a set of orthogonal load (Σ11,Σ22),
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in which the angle made by Σ11 and x1-axis is θ. Assuming that material obeys the
von Mises criterion. The nodal discretization of computational domain is presented
in Figure 6.13(a).

(a) 3D view (b) Σ11 − Σ22 view

(c) Σ11 − Σ12 view (d) Σ22 − Σ12 view

Figure 6.14: Metal with cavities: macroscopic strength domain under three-
dimensions loads (Σ11,Σ12,Σ22)

(a) θ = 0 (b) θ = 45o (c) θ = 90o

Figure 6.15: Metal with cavities: the distribution of plastic dissipation

The problem has been study in [126], and the comparison of the approximate
macroscopic strength domain obtained by iRBF method and those reported in [126]
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is expressed in Figure 6.13(b). From the figure, it can be observed that present
solutions well agree with results in [126]. The limit domain of macroscopic strength
for case of three dimension of applied load (Σ11,Σ22,Σ12) are presented in Figure
6.14. The distribution of plastic dissipation corresponding to different values of
loading angle θ are also plotted in Figure 6.15. It is easy to see that the yield zone
makes the lines connecting holes and the boundary of RVE.

6.4.3 Perforated material with different arrangement of holes

This section considers a perforated material with two circular holes arranged such
that the line connecting their centroid forms with x1 axis an angle ϕ, and the effect
of hole’s arrangement on the bearing capacity of macro-structures is investigated.
The micro-structure is subjected to the macroscopic tensile load as Figure 6.16.

x1

x2

φ

Ʃ11R

R
Ʃ11

Figure 6.16: Perforated material with two hole: geometry and loading

Denoting Vf for the volume fraction of void, the centroid’s coordinates of holes
and their radius can be determined by

x1i = ±(0.05 +R) cosϕ, i=1,2
y1i = ±(0.05 +R) sinϕ, i=1,2

and R =
√
Vf
2π (6.17)

Various values of angle ϕ for different volume of voids are studied. Figure 6.17
clearly illustrates the decrease of macroscopic tensile strength when increasing the
angle ϕ for all cases of Vf . The numerical solutions are also compared with those
reported in [126], and the agreement of solutions demonstrates the resonability of
present results. The plastic dissipation distribution for the volume fraction Vf = 0.2
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are plotted in Figure 6.18. The results point out that the failure mechanism as well
as the the strength of macro-structures is significantly affected by the change of the
void’s location in micro-scale level.
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Figure 6.17: Perforated material with two hole: the comparison of macroscopic
strengths obtained using iRBF and FEM in [126]

(a) ϕ = 00 (b) ϕ = 45o (c) ϕ = 90o

Figure 6.18: Perforated material with two hole: the distribution of plastic dissipation

6.5 Conclusions

The plastic limit strength and the collapse mechanism of materials has been
studied using the combination of direct analysis and homogenization theory. By
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means of second-order cone programming and the iRBF approximation, the re-
sulting optimization problems are kept in minimum size and solved rapidly. The
good agreement of numerical solutions in comparison with other studies shows the
computational efficiency of proposed method. In future work, the plane strain or
three-dimensions problems, in where the volumetric locking phenomena is required
to be handled, are extended. In addition, more complicate effects, e.g. material
interfaces, multiple crack or even variable loading should be considered.
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Chapter 7

Discussions, conclusions and future work

In this thesis, a novel numerical method employing the combination of the in-
tegrated radial basis function-based mesh-free method and second-order cone pro-
gramming is developed for limit and shakedown analysis. The application of pro-
posed approach for various problems regarding to structures and materials has been
investigated in chapters 3, 4, 5 and 6. The current chapter expresses several discus-
sions on the major issues arising during the course of the research, thereby both
advantages and disadvantages of present procedure are outlined. Then, the contri-
butions of this study are summarized, and several suggestions for future work are
recommended.

7.1 Discussions

7.2 The convergence and reliability of obtained solutions

In this thesis, the iRBF method is developed for both displacement and equilib-
rium formulations of direct analysis, for which the strictly lower-bound and upper-
bound models are applied in chapters 3, 4 and 6, whereas the quasi-lower bound
one is employed in chapter 5.

Theoretically, for all models used, the numerical solutions converge to the exact
value when increasing the nodal distribution, but using different formulations, the
convergence behaviour is different as illustrated in Figure 7.1. Usually, the upper
bound solutions approach to the actual collapse load multiplier from above, while
the lower bound results converge from bellow as seen in chapters 3 and 4. However,
owing to the approximation of displacement field and equilibrium equations are
satisfied in a weak form, the equilibrium formulation in chapter 5 provides solu-
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tions converging from above. It is interesting to note that although the analytical
solutions are not available for almost practical engineering problems, the mean val-
ues of numerical solutions independently obtained using reliable upper bound and
lower bound estimations can be recommended as actual safety loads for the use in
structural design.
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Figure 7.1: Convergent study (Prandtl’s problem in chapters 3 and 5)

The numerical solutions of limit and shakedown analysis for various benchmark
problems using the iRBF method with 2D and 3D discretizations have been re-
ported in this thesis. In several problems, e.g. in sections 3.3.1, 4.3.1, 5.3.1 and 5.3.2,
present solutions are priorly compared to the available analytical those in the liter-
ature in order to examine the accuracy of numerical results. It is important to note
that, all relative errors are less than 1%, especially in sections 4.3.1, and 5.3.2, these
errors are approximate 0%. The good agreement of proposed method in compari-
son with other studies, in which both analytical and numerical schemes are used,
demonstrates the reliability of the approach.

7.2.1 The advantages of present method

As clarified, the most attractive feature of direct methods is the capability to
assess the ultimate state of structures or materials without the step-by-step analysis,
and not only safety load multipliers but also collapse mechanics of the structural
systems are determined effectively. The positives of proposed method are offered by
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a robust numerical approximation scheme and a powerful mathematical tool, that
will be discussed following.

For one thing, there is the matter of the mesh in numerical discretization. As
known, physical problems are usually expressed in terms of partial differential equa-
tions (PDEs), but that cannot be solved with analytical approach in almost situa-
tions. As a result, PDEs need to be treated using approximations typically based
upon different types of discretizations. Traditionally, a favorite scheme, which is
commonly employed in mesh-base methods, e.g. FEM, FVM or BEM, is that the
physical domain is subdivided into a finite discrete elements connected together at
nodes. The priori definition of nodal connectivity is known as the mesh permitting
the compatibility of the interpolation and making the resulting approximation be
continuous. In general, mesh-based methods are robust particularly for mechanical
analysis; however, the creation of the mesh may become the major one of the total
cost in whole process of the numerical implementation. On contrary, from the prac-
tical standpoint, the absence of the mesh in iRBF method is an attractive feature,
decreasing the computational cost of such problems.

One more competitive advantage of iRBF method in comparison with mesh-
based ones as well as other mesh-free schemes gains from the shape function. In
traditional numerical procedures as FEM, the shape function of a node has low-
order and only affects on elements attached to it, while in the meshless methods,
the shape function can be flexibly constructed, i.e. the ability to create overlapping
nodal influent domain increasing the continuity of approximation, or the initiative
in choosing the order of functions. In mesh-free methods, the high-order shape
function not only help to provide the highly accurate solution with rapid convergent
rate, but also gives the effective treatment for the volumetric locking phenomena in
solid mechanics problems. In this study, the iRBF method is constructed based on
the multiple integration. As a result, its order is higher than other meshless ones,
e.g. RPIM when using similar basis function. The better performance of present
method compared to RPIM has been reported in section 5.3.1, i.e., iRBF method
takes less CPU-time to provide more accurate and rapidly convergent results than
RPIM when using the same nodal distribution.

Moreover, with the use of iRBF method in combination with second order cone
programming and collocation procedure, number of variables required for the re-
sulting optimization problems can be reduced significantly. It is worth noting that
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using present formulation, the optimization problems with thousand variables can
be speedily solved in seconds. The advantage of proposed approach in terms of
computational cost was clearly discussed in chapters 3, 4, 5 and 6. For instance, in
chapter 4, an application to limit state analysis of reinforced concrete slabs has been
presented. There is only transverse velocity in need to be approximated; therefore
the total number of variables in the resultant optimization problem is kept min-
imum, i.e. equal to the number of discretized nodes in the problem domain. In
section 4.3.1, present method was compared with a finite element method named
CS-HCT [208] and a mesh-free one so-called EFG [209]. Clearly, the solutions from
three methods converge to similar values, but generally, iRBF formulation shows
more efficiently than those of [208, 209] (both CPU-time and number of variables).

In addition, the advantage of the iRBF method over the EFG and almost mesh-
free approaches is that iRBF shape function satisfies Kronecker-delta property;
and therefore, there is no need of any special treatment when enforcing boundary
conditions.

Last but not least is the improvement of iRBF method itself using stabilized
conforming nodal integration technique. The collocation method is employed in
this thesis, meaning that all conditions are directly satisfied at discretized nodes
in problem domain. However, in chapter chapters 3 and 4, with the use of classi-
cal iRBF formulation, the global nodal influent domain is employed to ensure the
accuracy of solutions, resulting in dense matrices included in optimization prob-
lems. Whereas, using iRBF method combined with SCNI scheme, which is so-called
stabilized iRBF, in chapters 5 and 6, only the local domain is required in the ap-
proximation, and those matrices become sparse, decreasing the computer memory
and CPU-time in solving process significantly. The advantage of stabilized iRBF
in comparison with classical iRBF is clearly pointed out in section 5.3.1. It can be
observed that solutions obtained from both models of iRBF method converge to the
analytical one, but the local iRBF formulation with the support of SCNI provides
the improvement of computational efficiency concerning accuracy and time taken
for resulting optimization problem when using similar basis (nodal distribution and
shape parameter).
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7.2.2 The disadvantages of present method

The advantages and disadvantages of iRBF method are generated from the key
difference of mesh-free procedures and mesh-based ones, i.e. the shape function
and strategy to construct it. In previous section, the positive features of proposed
method are discussed, now the negative those will be focused on.

Generally, the high-order shape function makes iRBF method as well as mesh-
free ones more advantageous compared to mesh-base procedures to provide the
accurate solutions with the speed convergence. The only disadvantage here is that
it takes more computational run-time, and thus the cost of these process is still high.
However, that is not the major obstacle of this study since the biggest challenge
of direct analysis is dealing with the optimization problems accounting the most of
overall cost. Employing the combination of stabilized iRBF approach and primal-
dual interior-point SOCP algorithm, the resulting formulation is kept in minimum
size and then solved rapidly using the highly efficient solvers.

Another limitation of meshless methods preventing the acceptance of the engi-
neering community is that there are several factors affecting on the accuracy of
outcomes must be priorly selected, for instance, the influence domain size or the
coefficients of the shape function. A set of factors for one case may not work cor-
rectly for another ones, i.e., in case of elastic analysis, the dimensionless parameters
should be chosen as (αs = 10−5÷ 2.5, βs = 3); whereas in direct analysis, those val-
ues are given as (αs = 10−5 ÷ 2, βs = 6) for structure scale and (αs = 10−5, βs = 3)
for material scale. It is difficult to find out a unified standard of approximation
properties for all practical problems. In literature, the gap for choice is determined
by trial and error.

In short, besides many advantages of computational aspect, there are several
matters needed to be overcome in iRBF as well as other mesh-free approximation
techniques. However, it should be realized that mesh-free methods are still in their
infancy. They are being continuously improved to be integrated into commercial
software packages for structural design.
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7.3 Conclusions

The major objective of the research is to develop a robust numerical approach
for direct analysis of structures and materials widely used in practical engineering,
resulting in the use of iRBF-based meshless procedure and the primal-dual second
order cone programming algorithm in the thesis. Detailed conclusions on specific
problems are presented in chapters 3, 4, 5 and 6. This chapter will give the outline
of the remarkable points following.

Firstly, this is the first time the iRBF mesh-free method combined with stability
conforming nodal integration (SCNI) is developed to deal with the problems in
the area of limit and shakedown analysis of structures and materials. The iRBF
shape function is used to approximate the displacement as well as stress fields. The
advantages of such procedure can be summarized as follows

• Unlike the traditional iRBF approach, for which the constrains in problems
are imposed at various Gauss points, using the collocation method and SCNI
scheme in this study, the kinematic and equilibrium conditions as well as the
numerical integration in resulting optimization problems can be directly ap-
plied at scattered nodes, making proposed method truly mesh-free and reducing
the size of formulated problems.

• The high-order iRBF shape functions are constructed on the overlapping influ-
ence domains, thus the enforcement of discontinuous condition at the interfaces
of neighbour computational cells is not necessary.

• The high-order iRBF shape functions help to keep total number of variables to
a minimum, i.e. for the kinematic discretization of bending slabs in chapter 4,
only one degree of freedom (deflection) needs to be approximated instead of
three those (deflection and two rotations) as in finite element method.

• The shape function satisfies Kronecker-delta property, which is absent in almost
meshless procedures. As a result, the essential boundary conditions in problems
can be similarly imposed as in finite element formulation. This characteristic
also makes the matrices spare, decreasing the CPU run-time in whole solving
process.

Secondly, by mean of conic algorithm, the largest obstacle in direct analysis is
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overcome. The optimization problems are cast as second order cone programming,
and then solved using an efficient commercial software package named Mosek. The
numerical examples investigated in the thesis show that with the use of primal-
dual interior point algorithm, a problem with thousand variables can be solved in
seconds, proving that present method can be applied for large scale problems in
engineering practice.

In conclusion, the combination of stabilized iRBF-based mesh-free method and
SOCP algorithm results in a robust numerical procedure for limit and shakedown
analysis, for which not only the safety loads are rapidly determined, but also the
collapse mechanics of structures and the yield surface of heterogeneous materials
are effectively captured. The good agreement in comparison with the analytical
approach as well as other numerical schemes in literature fully justifies the compu-
tational effects of proposed method.

7.4 Suggestions for future work

Although present research has met most of initial objectives, there are several
issues needed to be overcome in future works, and there are some techniques are able
to be applied to improve the computational aspect of proposed method. Following
extensions are recommended for further development of present work.

As mentioned, in iRBF procedures as well as other mesh-free methods, the shape
parameters and influent domain size impact on the accuracy and stability of out-
comes significantly. However, those factors are variable, and there are not any com-
mon standard for choice yet. In most studies, the well-known strategy is selecting
form a gap determining by trial and error. It is important to find out an efficient
algorithm to optimize those values and discover an appropriate interval for almost
problems. That is interesting topic to be taken into account in further studies.

Taking advantage of a positive feature of mesh-free methods, i.e. the absence of
the mesh in numerical discretization, the adaptive technique, especially h-adaptivity,
may be easily applied for the implementation of iRBF procedure. The natural con-
forming property of mesh-free approximations make the use of h-adaptivity, for
which only nodes have to be added, comparably simple. Also, conceptually, the
application of p-adaptivity in meshless methods is simpler than in mesh-based ones,
there are only additional enrichment is required to be added to the basis function.
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Based on a posterior error estimation, adaptive scheme will automatically refine at
indicated locations, e.g. plastic zone, and leave out the refinement at other regions
within the problem domain. Consequently, the convergence rate is improved, and
the cost of computation can be reduced. It would be relevant to extend adaptive
strategy to iRBF formulation for direct analysis of engineering structures.

Moreover, there are various practical engineering problems for which this thesis
cannot cover, for instance, fracture problem - an interesting topic in solid mechanics.
In fact, traditional methods as FEM are not well suit for the treatment of disconti-
nuities which do not coincide to the original mesh line, leading to the development
of the so-call eXtended Finite Element Method (XFEM) which is demonstrated to
be an effective solution for crack problem. In further studies, an extension of enrich
technique from XFEM to iRBF approximation could be a good idea for limit and
shakedown analysis of fracture structures using iRBF approach.

Furthermore, in computational homogenization analysis of materials, only plane
stress problems are investigated. In future works, the plane strain or three dimen-
sions problems, where the volumetric locking needed to be handled, will be ex-
tended. The more complicate effects such as variable, cyclic or repeat loading, or
even materials with diverse constitutes including material interfaces, multiple crack
may be also considered in the problems.
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